版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
李杰林蚁群算法(ACO)介绍 20世纪90年代意大利学者M.Dorigo,V.Maniezzo,A.Colorni等从生物进化的机制中受到启发,通过模拟自然界蚂蚁搜索路径的行为,提出来一种新型的模拟进化算法——蚁群算法,是群智能理论研究领域的一种主要算法。用该方法求解TSP问题、分配问题、job-shop调度问题,取得了较好的试验结果。虽然研究时间不长,但是现在的研究显示出,蚁群算法在求解复杂优化问题(特别是离散优化问题)方面有一定优势,表明它是一种有发展前景的算法。ACO算法起源
蚁群算法是对自然界蚂蚁的寻径方式进行模似而得出的一种仿生算法。蚂蚁在运动过程中,能够在它所经过的路径上留下一种称之为外激素(pheromone)的物质进行信息传递,而且蚂蚁在运动过程中能够感知这种物质,并以此指导自己的运动方向,因此由大量蚂蚁组成的蚁群集体行为便表现出一种信息正反馈现象:某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。算法原理算法原理
基于以上蚁群寻找食物时的最优路径选择问题,可以构造人工蚁群,来解决最优化问题。
人工蚁群中把具有简单功能的工作单元看作蚂蚁。二者的相似之处在于都是优先选择信息素浓度大的路径。较短路径的信息素浓度高,所以能够最终被所有蚂蚁选择,也就是最终的优化结果。
两者的区别在于人工蚁群有一定的记忆能力,能够记忆已经访问过的节点。同时,人工蚁群再选择下一条路径的时候是按一定算法规律有意识地寻找最短路径,而不是盲目的。例如在TSP问题中,可以预先知道当前城市到下一个目的地的距离。算法原理自然蚁群人工蚁群蚁群一组有效解(种群规模N)觅食空间问题的搜索空间(维数D)信息素信息素浓度变量蚁巢到食物的路径一个有效解最短路程问题最优解算法原理TSP问题表示为一个N个城市的有向图G=(N,A),其中 城市之间距离目标函数为,其中为城市1,2,…n的一个排列,算法示例蚂蚁k(k=1,2,…,m)根据各个城市间连接路径上的信息素浓度决定其下一个访问城市,设表示
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度变更离婚协议书后子女探望权安排合同
- 2024年度技术开发合同:新能源动力装置的研发与技术共享协议
- 04版技术研发与转让合同:某科研机构与科技公司之间的合同
- 2024年度教育培训服务与课程定制合同
- 2024年度新能源发电设备采购与安装合同
- 脚踏车支架市场发展现状调查及供需格局分析预测报告
- 2024年度医疗设备购买与维护服务合同
- 掷环游戏用铁圈市场发展现状调查及供需格局分析预测报告
- 2024年度物业服务合同服务质量保证
- 贵金属及其合金制塑像市场需求与消费特点分析
- 2024年医疗器械经营质量管理规范培训课件
- 22G101三维彩色立体图集
- 建筑施工安全生产治本攻坚三年行动方案(2024-2026年)
- 县农村土地确权信息纠错工作实施方案
- (完整版)RNA的生物合成(转录)考试题目及答案
- 关于统一使用公司手机号码的通知
- 标准吞咽功能评价量表(SSA)2页
- 北京一号是怎样构造和设计的
- 用友华表伙伴商务手册.
- 心理安全网格化监管实施方案
- 钢筋混凝土课程设计
评论
0/150
提交评论