版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Pathways
toCommercial
Liftoff:CleanHydrogenMarch|
2023This
report
waspreparedas
anaccountof
work
sponsored
byanagencyoftheUnited
Statesgovernment.NeithertheUnited
Statesgovernmentnorany
agencythereof,
nor
any
of
theiremployees,
makes
any
warranty,
express
or
implied,
or
assumes
anylegalliability
orresponsibility
fortheaccuracy,completeness,or
usefulness
of
anyinformation,
apparatus,product,or
process
disclosed,
orrepresents
that
its
use
would
not
infringe
privately
ownedrights.
Reference
hereinto
any
specific
commercial
product,
process,
or
service
by
tradename,trademark,
manufacturer,
or
otherwisedoes
notnecessarily
constituteor
imply
its
endorsement,recommendation,
or
favoring
bytheUnited
Statesgovernmentor
any
agency
thereof.Theviews
and
opinions
ofauthors
expressed
hereindonotnecessarily
state
or
reflectthoseof
theUnited
Statesgovernmentorany
agency
thereof.Pathways
to
Commercial
Liftoff:
Clean
HydrogenCommentsThe
Department
ofEnergywelcomesinputand
feedback
onthecontents
of
thisPathway
toCommercial
Liftoff.
Pleasedirectall
inquiries
and
inputtoliftoff@.
Inputand
feedback
shouldnot
include
businesssensitiveinformation,
tradesecrets,
proprietary,
or
otherwiseconfidentialinformation.
Pleasenotethat
inputand
feedback
providedis
subject
totheFreedomof
Information
Act.AuthorsAuthorsof
the
CleanHydrogen
Pathway
toCommercial
Liftoff:Office
of
Technology
Transitions:
Hannah
MurdochOffice
of
CleanEnergyDemonstrations:Jason
MunsterHydrogen
&Fuel
CellTechnologies
Office:
SunitaSatyapal,
NehaRustagiArgonne
NationalLaboratory:
Amgad
ElgowainyNationalRenewable
EnergyLaboratory:
MichaelPenevCross-cutting
Department
of
Energy
leadershipfor
the
Pathways
toCommercial
Liftoff
effort:Office
of
CleanEnergyDemonstrations:DavidCrane,Kelly
Cummins,
MelissaKlembaraOffice
of
Technology
Transitions:
Vanessa
Chan,Lucia
TianLoanProgramsOffice:Jigar
Shah,
Jonah
WagnerAcknowledgementsThe
authorswouldliketoacknowledge
analytical
support
from
ArgonneNationalLaboratoryand
McKinsey&Company;aswell
asvaluable
guidance
and
inputprovidedduringthepreparationof
thisPathway
to
Commercial
Liftoff
from:Office
of
CleanEnergyDemonstrations:KatrinaPielli,
CatherineClark,
Jill
Capotosto,
Todd
Shrader,Sarma
Kovvali,
Eric
Miller,
AndrewDawsonOffice
of
Technology
Transitions:
Stephen
Hendrickson,
Katheryn
(Kate)Scott,MarcosGonzales
Harsha,James
Fritz,
Edward
RiosLoanProgramsOffice:Ramsey
Fahs,
JulieKozeracki,EdDavis,DineshMehta,MoniqueFridell,
Mike
Reed,ChristopherCreedOffice
of
Policy:
CarlaFrisch,SteveCapanna,BetonyJones,Elke
Hodson,
Colin
Cunliff,
AndrewFoss,Paul
Donohoo-Vallett,ChikaraOnda,
Marie
FioriHydrogen
&Fuel
CellTechnologies
Office:
Eric
Miller,
Jesse
Adam,
Dimitrios
Papageorgopoulos,
NedStetson,BrianHunter,McKenzie
HubertOffice
of
EnergyEfficiency
andRenewable
Energy:
Alejandro
Moreno,Paul
Spitsen,Avi
Shultz,
Becca
Jones-Albertus,Michael
Berube,Brian
Cunningham,
Carolyn
Snyder,
Jay
Fitzgerald,
IanRoweOffice
of
FossilEnergyandCarbon
Management:
BradCrabtree,Jen
Wilcox,
NoahDeich,
Mark
Ackiewicz,DavidAlleman,TimReinhardt,RobertSchrecengost,
EvaRodeznoDirectorof
theOffice
of
EconomicImpactandDiversity:ShalandaBaker,
Tony
Reames,
James
StrangeAdvanced
ResearchProjectsAgency-Energy:
Jack
Lewnard,James
ZahlerOffice
of
InternationalAffairs:
Julie
Cerqueira,MattManningOffice
of
theGeneralCounsel:AlexandraKlass,AviZevin,Narayan
Subramanian,
BrianLally,
GlenDrysdaleOffice
of
theChief
Financial
Officer:
SeanJamesAssistant
SecretaryforCongressional&Intergovernmental
Affairs:
Becca
WardPathways
to
Commercial
Liftoff:
Clean
HydrogenAcknowledgements
(cont.)Office
of
Indian
EnergyPolicyand
Programs:Wahleah
Johns,
Albert
PetrasekOffice
of
FederalEnergyManagement
Programs:Mary
Sotos,NicholeLiebovAdvanced
Manufacturing
Office:
IsaacChan,PaulSyers,
Felicia
Lucci,Nick
Lalena,Emmeline
KaoOffice
of
NuclearEnergy:
KatyHuff,
Alice
Caponiti,Jason
Marcinkoski,
AlisonHahnAssistant
SecretaryforElectricity:
Michael
PesinOffice
of
Science:Harriet
Kung,AndySchwartz,
LindaHorton,Chris
Fecko,
Raul
MirandaSolarEnergyTechnologies
Office:GarretNilsenScience
&EnergyTech
Teams
(SETT):
RachelPierson,Kelly
ViscontiArgonne
NationalLab:Aymeric
RousseauNationalRenewable
EnergyLaboratory:
MatteoMuratori,CatherineLedna,
LingTaoPathways
to
Commercial
Liftoff:
Clean
HydrogenTable
of
ContentsExecutive
Summary1Chapter1:Chapter2:IntroductionandObjectives69Current
State–Technologies
andMarketsSection2.a:
Technology
landscapeUpstream:
Cleanhydrogen
productionMidstream:
Distribution
and
storageDownstream:
End-uses9101418222531353638394245454849525656636871102103Section2.b:
CurrentprojectsSection2.c:
Techno-economicsPathways
toCommercialScaleSection3.a:
Dynamics
impacting
pathways
tocommercial
scaleProductionChapter3:MidstreamEnd-usesSection3.b:
Capital
RequirementsSection3.c:
Broaderimplicationsof
hydrogen
scale-upSupply
chainSocioeconomicEnergyandenvironmentaljustice
(EEJ)Section3.d:
Hydrogen
and
hydrogen-derivative
exportsChallengestoCommercialization
and
PotentialSolutionsSection4.a:
Overview
of
challengesand
considerationsalongthevaluechainSection4.b:
Priority
solutionsChapter4:Chapter5:Metrics
and
MilestonesChapter6:Modeling
AppendixTable
of
FiguresReferencesPathways
to
Commercial
Liftoff:
Clean
HydrogenPurpose
ofthis
ReportThese
Pathways
toCommercial
Liftoff
reportsaimtoestablishacommon
fact
base
andongoingdialoguewith
theprivatesector
around
thepath
tocommercial
liftoff
for
critical
cleanenergytechnologies.
Theirgoalis
tocatalyze
more
rapidandcoordinated
actionacross
the
fulltechnologyvaluechain.Executive
SummaryThe
U.S.cleanhydrogen
market
ispoisedfor
rapid
growth,
accelerated
byHydrogen
Hubfunding,
multipletaxcreditsunder
theInflation
ReductionAct(IRA)
including
the
hydrogen
production
taxcredit(PTC),DOE’s
Hydrogen
Shot,anddecarbonizationgoals
across
the
public
and
privatesectors.1,i
Hydrogen
can
playaroleindecarbonizingupto25%
ofglobal
energy-related
CO2emissions,
particularly
inindustrial/chemicalsusesandheavy-duty
transportation
sectors.iiAchieving
commercial
liftoffwill
enable
cleanhydrogen
toplay
acriticalrolein
theNation'sdecarbonizationstrategy.The
cleanhydrogen
market
will
beacceleratedby
historiccommitmentstoAmerica’s
cleanenergyeconomy,including
equities
in
the
InflationReductionAct
(IRA)
andthe
Infrastructure
Investment
and
Jobs
Act(IIJA).
Together,
thesesupply-side
incentivescanmake
cleanhydrogen
cost-competitive
with
incumbent
technologiesinthenext
3–5
years
fornumerous
applications.2
Hydrogen
deployment
isanopportunityto
providebenefitsto
communities
across
America,
includingquality
jobs,
climatebenefits,
and
decreased
air
pollution.
Aswith
all
newtechnologies,
significantcare
andattention
must
bepaidduringimplementation
toensure
deployment
does
notperpetuate
existinginequities
within
theenergysystem.Cleanhydrogen
productionfordomestic
demandhasthe
potentialtoscalefrom<1
millionmetrictonperyear(MMTpa)
to~10MMTpa
in2030.iii
Mostnear-termdemand
will
come
from
transitioningexistingend-uses
awayfromthecurrent~10
MMTpaofcarbon-intensivehydrogen
production
capacity.Ifwater
electrolysis
dominates
asthe
productionmethod,
upto200
GWofnewrenewable
energysources
would
beneededby2030to
support
cleanhydrogen
production.3
The
opportunityfor
cleanhydrogen
intheU.S.,aligned
with
theDOENational
CleanHydrogen
StrategyandRoadmap,
is50
MMTpaby
2050.4,iiiScalingthemarketwill
requirecontinuingwork
onaddressingdemand-sidechallenges.
Forexample,
scalingmidstream
infrastructure
will
drastically
lower
the
delivered
cost
of
hydrogen
outsideofco-locatedproduction
and
offtake,improvingthebusinesscase
forprojects
and
accelerating
uptake
ofcleanhydrogen.
Bolsteringdemand
and
unlocking
long-termofftake
will
support
the
currentproliferationofhydrogen
productionproject
announcements
and
help
those
productionprojects
reach
final
investment
decision(FID).1Defined
ashaving
acarbonintensity
<4kg
CO2e/kgH22SeeChapters2and3for
examination
of
breakeven
timing
for
enduses
switching
from
anincumbent
technology
to
clean
hydrogen.
Note,breakeven
forbest-in-class
projects
doesnotindicate
all
projects
switching
toclean
hydrogen
would
seebreakeven
in
thenext
3–5years(seeFigures
15and27–Modeling
Appendices)for
evaluate
of
best-in-class
projectsvs.
arangeof
projects.3Assumesequalsplit
ofsolar
and
wind
GW
ofinstalled
capacity.
Capacityfactorsare
based
onNRELAnnual
Technology
Baseline
Class
5onshore
wind
(45%)and
utility
solar
(27%).Rangeincludes
PEM
and
alkaline
electrolyzer
efficiency
fromNRELHydrogenAnalysis
(H2A)production
model.
200
GW
representsahigh
casein
which
morethan90%of
domesticclean
hydrogen
producedin
2030is
via
waterelectrolysis.
Clean
powerforelectrolysis
could
also
comefrom
sourcessuch
asnuclear.4Equivalent
to~1/10current
domestic
natural
gas
consumptionPathways
to
Commercial
Liftoff:
Clean
Hydrogen1Inthepresentpolicy
environment,commercial‘liftoff’forcleanhydrogen
isexpected
totakeplaceinthreephases:•Near-term
expansion
(~2023–2026):Accelerated
bythe
PTC,clean
hydrogen
replacestoday’s
carbon-intensivehydrogen,
primarilyinindustrials/chemicals
usecases
including
ammonia
production
and
oil
refining.5
This
shiftwillprimarilyoccur
atco-located
production/demand
sites
or
in
industrialclusters
with
pre-existinghydrogen
infrastructure.
Inparallel,
first-of-a-kind
(FOAK)projects
are
expected
tobreak
ground,
driven
by$8BinDOE
funding
for
Regional
CleanHydrogen
Hubs
that
will
advance
newnetworks
ofshared
hydrogen
infrastructure.•Industrialscaling(~2027–2034):Hydrogen
productioncosts
will
continue
to
fall,driven
byeconomies
of
scaleand
R&D.Duringthisperiod,privately
funded
hydrogen
infrastructure
projects
will
come
online.
These
investments,
including
thebuild-out
ofmidstreamdistribution
and
storage
networks,
will
connect
agreater
numberofproducers
andofftakers,reducingdeliveredcost
and
driving
cleanhydrogen
adoption
innewsectors
(e.g.,fuel-cell
based
transport).
At
thesametime,hydrogen
combustion
orfuel
cellsforpower
couldbeneeded
to
achievethe
Administration'sgoalof100%cleanpower
by2035.6
There
areawide
range
of
forecasts
denotinghydrogen’s
rolein
the
power
sector,
whether
for
high-capacityfirm,
lower-capacity
factor
power,orseasonal
energystorage
–see
reportfor
more
detailedscenarios.•Long-termgrowth
(~2035+):
Aself-sustaining
commercial
market
post-PTC
expirationwill
bedrivenbyfalling
deliveredcosts
due
to:7A.
Availability
oflow-cost,cleanelectricity
(forelectrolysis),B.
Equipment
cost
declines,C.Reliable
andat-scale
hydrogen
storage,
andD.Highutilization
ofdistributioninfrastructure,
includingdedicated
pipelines
that
move
hydrogen
from
low-costproduction
regionstodemand
clusters.8To
achieveprofitability
post-PTC
expiration,cost
declinesarerequiredoverthenext
10–15
years.
Duetohydrogen’s
myriadend
uses,
capex/opex
breakeven
will
bedifferent
depending
onenduse.
Today
to2030,
industryexpectstoseesignificantcost-downs
in
electrolyzer
capex(e.g.,~$760-1000/kWtodayto
forecasted
$230–400/kWby2030for
uninstalledalkalineelectrolyzers,
from$975–1,200/kWto~$380-450/kW
for
uninstalledPEM
electrolyzers).
Low-costcleanhydrogen
viaelectrolysis
will
alsodepend
on
ample
availability
of
low-cost
cleanelectricity
(<$20/MWh)
thatwill
needto
scaleinparallelwith
market
demand
for
clean
hydrogen.9,10
These
cost
declinestranslate
toareduction
inhydrogen
productioncosts,excludingthe
PTC,
from
$3–6/kg
todayto$1.50–2/kg
by
2035.These
2035
expected
cost-downs
areslightly
abovethe
DOE’sHydrogen
Shot,which
setsanambitious$1/kg
by2031target
based
onstretch
R&Dgoals.Dependingontype
of
electrolyzerand
availability
of
high-capacity
factor
cleanenergy,
some
projects
may
hittheHydrogen
Shottarget
($1/kg
withoutPTCin2031),which
wouldfurther
accelerate
liftoff.Costdeclines
for
hydrogen
delivery
will
alsobecritical
for
transportation
end-usesthat
use
hydrogen
directly,
such
asfuel
cellpoweredvehicles.5Producedwithcarbonintensity
<
4kgCO2e/kgH26In
addition,
some
private
sectorplans
toco-fire
turbines
withhydrogenhavealready
beenannounced7SeeChapter38This
report
refers
tohydrogen“distribution”
to
mean
the
movement
ofhydrogen
molecules,
regardless
of
scale
ormode
of
movement.9Basedonforecasts
fromthe
Bloomberg
NewEnergyFinance
&HydrogenCouncilforalkaline
electrolyzers.
Additional
assumptions
details
are
included
in
theappendix.Quoted
numbers
areforsystemcapexexcludinginstallation
costs.10Notethat
cost-downs
aredependenton
more
than
thesefactors
alone–seeChapters2and3fordetail
oncost
driversPathways
to
Commercial
Liftoff:
Clean
Hydrogen2Projectandadoptionriskwill
fallas
thecleanhydrogen
value
chainmatures.
Addressing
the
commercializationchallenges
belowwill
unlock
eachsubsequent
phaseof
growth:•Near-term
expansion:The
cost
ofmidstreaminfrastructure
will
be
highly
relevant
for
usecases
where
supplyanddemand
arenot
co-located.11
Absence
oflong-termofftake
contracts
tomanage
volume/pricerisk,
uncertaintyaboutcost/performance
atscale,permitting
challenges,andheterogeneous
businessmodels
coulddelay
financing
for
FOAKprojects.12
Electrolyzer
supplychains,
CO2distributionand
storage
infrastructure,
andaskilledhydrogen
workforce
willall
face
pressure
toscale.•Industrialscaling:
Ifnotresolvedearlier,
thegrowthchallengesfaced
abovewill
beexacerbated
duringindustrialscaling.The
pace
of
clean
electricity
deployment
will
be
akey
driver
ofhydrogen
production
technologymix.
Ifconstrained,
reformation
with
carbon
capture
andstorage
(CCS)
isexpected
to
dominate
(making
upto80%ofhydrogenproduced
in2050
versus50%inahigh-renewables
scenario).13Forwater
electrolysis,
availability
ofcleanelectricity
and
bottlenecks
inelectrolyzer
components/raw
materials
will
playacriticalroleinthepace
ofgrowth.
Ifelectrolysis
projects
failtoscale
duringtheIRAcreditperiod,electrolysis
may
notachievethenecessary
learning
curvestoremain
competitiveintheabsence
oftaxcredits.Each
sector
convertingto
cleanhydrogen
will
alsohave
itsownopportunitiesand
challenges.Forexample,
fuel
cellheavy-duty
truck
adoptionwill
behighly
dependent
onthe
build-out
ofrefuelinginfrastructure,
advancements
infuel
cellvehicle
technology,
certaintyofhydrogen
supply,
andthe
cost
ofalternatives
(e.g.,
diesel,
batteryelectric
vehicles
andtheir
associated
costs
ofcharginginfrastructure)
and
regulatorydrivers.Onthe
financing
side,perceived
creditriskwillbe
highfor
hydrogen
projects
while
these
challenges
remain
unresolved,delaying
timelinesfor
low-costcapitalproviders
toenter
the
market.•Long-termgrowth:Post-PTC
expiration,competitivenesswill
rely
onproductionand
distribution
costdeclines
achievedthrough
theIRAcreditperiod.Developmentofmature
financial
structures
and
contract
mechanisms
tomitigate
theremaining
risks
(e.g.,pricevolatility)
and
crowd-in
institutional
capital
will
alsobe
needed.1411Midstreaminfrastructure
canmore
than
doublethe
delivered
cost
of
hydrogen;the
U.S.Gulf
Coastandparts
of
California
are
theonly
regions
withexistingH2networks12SeeSection
3band4a.13McKinseyPower
Model,seeFigure
1414While
notexploredin
this
document,
otherpolicy
mechanisms
willplay
animportantrole
in
meeting2050
GHGgoals
(e.g.,
carbon-intensity
standards
that
would
value
low-carbon
commodities,
zeroemissionvehicle
mandates).
These
initiatives
would
further
bolster
the
caseforclean
hydrogenandits
derivedproducts,
evenif
not
explicitly
targeting
the
clean
hydrogeneconomy.Pathways
to
Commercial
Liftoff:
Clean
Hydrogen32030
costsacross
thevalue
chain
ifadvances
indistributionandstoragetechnologyarecommercialized1IndustryGas
replacementTransportUpstream:HydrogenproductionMidstream:
Hydrogen
distribution
andstorage
assumingstate-of-arttechnologyatscale2Downstream:End
useapplicationsEnduse
willingness
to
pay4AmmoniaReformation-basedproductionCommercialized,best-in-class
gascompression$0.1/kg
at
600tpd,300km,
12”OD$0.9-2.3/kg$0.1/kg
at
~5000
tpd,1000km,
42”OD$0.1/kgat
80barfor7days,600tpdRefiningSteelw/
$0.75/kg
PTC:$0.2-0.4/kgLCOH=$0.4-0.85/kgat
500bar,
10tpd(tank
storage,
truckdistribution)$1-1.3/kg$0.1/kgat
80-120bar,50+
tpd(pipeline,
co-locatedelectrolysis)Salt
cavernstorageH2pipelineCO2
transport/sequestration$1.25-2.3/kg$0.9-2.3/kg$0.4-0.5/kg$0.7-1.5/kgChemicals$0.8
/kgat
500barfor
7days$0.7-1.5/kgat
10tpd,
250kmNG
blendingWaterelectrolysisCompressedgas
tankstorageGas
phase
truckingIndustrial
heatw/
$3/kg
PTC:LCOH<$0.4/kg3$2.7/kg
at
50tpd$0.2/kg
for7days,
50tpd
scale$0.2-0.3/kgat
50tpd,
250kmPower
gen.(high-capacity
firm)$0.4-0.5/kgLiquefactionLiquidLiquidhydrogenstoragehydrogentrucking$1-3.6/kg≥700kg/day,
700barAviation
and
maritime
fuels5$0.7-3/kgNextgenerationfuel
dispensingat
high
utilization6HDMDroadtransport$4-5/kg1Seeappendixfor
calculation
details2Databasedoncost-downs
sharedfrom
leading-edgecompanies
who
havedeployedat
demonstrationscale
(or
larger)3Rangebasedonvarying
renewables
costs
andelectrolyzer
sizes/technologies4Defined
asthe
price
anofftaker
willpayforcleanhydrogen5Represents
delivery
of
hydrogento
aviation
andmaritime
fuelproduction
facilities6Greater
than
orequalto
70%utilization,
assumes
line
fill
athigh
pressureSources:
HDSAM,
ArgonneNationalLaboratory;
DOENational
Hydrogen
Strategy
andRoadmap,
HydrogenCouncilSeeFigure10inbodyofreport:
Industry
estimates
thatmultiplemethods
ofhydrogen
distributionand
storage
canbecomeaffordable
ifstate-of-the-art
technologiesarecommercializedatscale
(2030costs
across
thevaluechain).
Hydrogenproduction
costs
showntake
anupperbound
ofproductioncosts
(~2MW
(450Nm3/h)
PEMelectrolyzer
with
Class9NRELATB
wind
power)
andthen
subtract
the
PTCatpoint-in-time.
SeeadditionalnotesonFigure10todescribe
creditapplicationsand
productioncosts
as
well
asFigures11/12
for
production
costsacross
different
pathways.Pathways
to
Commercial
Liftoff:
Clean
Hydrogen4Cross-cutting
solutions,includingDOE
H2Hubs,willaccelerate
market
uptake:1.Invest
inthedevelopment
of
hydrogen
distributionandstorageinfrastructure,initially
through
centralized
hubsand
later
through
distributedinfrastructure.
Dispersedinfrastructure
will
unlockuse
cases
for
hydrogen
whereproduction/offtake
arenotco-located,connecting
newofftakers
toregionalhydrogen
networks.
Pipelines
and
salt-cavernstorage
will
becritical
anchorstothissystem,providing
low-costdistributionand
storage
atscale.
Ascleanhydrogen
production
scales,cost-effective
distribution/storageinfrastructure
will
be
essential
toavoidbottlenecks
in
thehydrogen
economy.By2030,
halfof
the
necessary
cleanhydrogen
investmentdollars
are
expected
to
beformidstream
andend-use
infrastructure
($45–130B).152.Catalyzesupplychaininvestments,
including
in
domestic
electrolyzer
manufacturing,
recycling,
and
rawmaterials/components
for
electrolyzer
production.16
Domestic
electrolyzer
manufacturing
must
scalefrom
<1
GWtodaytoupto20–25
GW/yearby2030.17
The
deploymentof
adjacent
cleanenergytechnologieswill
alsobecriticaltothe
hydrogen
value
chain:
upto200
GWofnewrenewable
energymay
beneeded
by2030
toproduce
~10MMTcleanhydrogen
if
water
electrolysis
dominates
as
theproduction
pathway(>90%
production
mix)aswell
as2–20millionmetric
tonnesof
newCO2storage
for
reformation-based
production.v,18,19,203.4.5.Develop
regulationsfor
ascaled
industry,
includingmethods
of
lifecycle
emissionsanalysis
across
feedstocks
andproduction
pathways.21
These
policyandregulatorydevelopments,
alongwith
many
others(e.g.,changesthat
wouldstreamline
project
permitting/siting),would
take
placeacross
both
federal
and
stateagenciesand
would
providecriticalcertaintytoaccelerate
privateinvestment.Standardizeprocesses
andsystemsacrossthehydrogen
economy.Privatesector
standardsorganizations
willplayacritical
roleindriving
cross-industry
standard
operatingprocedures
(SOPs),certifications,
andcomponentinteroperability
(e.g.,atrefueling
stations)to
accelerateproject
development
andreduce
costs.
Standardscanhelpestablishindustry-wide
safety
and
environmental
protocols.Accelerate
technical
innovation
throughR&D,
includingincriticaltechnologiesfor
nascent
electrolyzer
stacks
(e.g.,newdesignsandmaterials
for
anion-exchange
membrane
[AEM]electrolyzers)
tobringdown
costs
andmitigate
risksof
bottlenecks
insome
electrolyzer
technologies(e.g.,platinumgroupmetals
[PGMs]for
proton-exchange
membrane[PEM]
electrolyzers).
R&D
is
alsoneeded
to
bring
down
the
cost
of
carbon
capture,
utilization,
andstorage
(forreformation-based
production)
as
well
as
inend-use
applications
such
as
improvingfuel
celldurability.6.Expand
thehydrogen
workforce
with
the
engagement
of
companies
that
havepreexistingexpertiseinsafe
hydrogenhandling(e.g.,industrial
gas,
chemicals,oilandnaturalgas)aswell
as
labor
unionswith
theskilledworkforce
andrelevanttrainingprograms
torapidly
expand
the
workforce.
In2030,thirdpartyanalysis
suggests
that
thehydrogeneconomy
couldcreate
~100,000netnewdirectand
indirectjobs
relatedtothebuild-outof
newcapital
projects
andnewcleanhydrogen
infrastructure
(~450,000cumulativejob-years
through
2030).Directjobs
includeemploymentinfieldssuch
asengineeringandconstruction.
Indirectjobs
includerolesinindustrial-scalemanufacturing
andthe
rawmaterials
supply
chain.
Anadditional
~120,000
directandindirectjobs
relatedtotheoperationsandmaintenance
ofhydrogen
assets
couldalsobecreated
in2030
–these
would
not
all
benet
newjobsduetothe
broader
transitiontoanet
zero
economy,for
example,
current
gasstation
operatorstransitioningintohydrogen
refuelingstationoperators.22,2315Basedonthe
HydrogenCouncilrequired
investmentmethodology
using
the“Net
zero2050–highRE”demand
scenario16RawMaterials
include
platinum
groupmetals(PGMs),suchasiridium,
which
is
required
for
protonexchange
membrane
(PEM)electrolyzers1720–25GW
represents
anupperboundassuming
>90%of
clean
hydrogenproduction
through2030is
via
waterelectrolysis
andthat
theelectrolyzers
usedin
this
production
areexclusively
fromdomesticproduction.
SeeMethodology13in
ModelingAppendixfordetails
related
to
this
scenario.18The
U.S.currently
stores
25millionmetrictonnes
CO2peryeareconomy-wide,
Global
CCS
Institute,
public
announcements
as
of
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林艺术学院《素描Ⅰ》2021-2022学年第一学期期末试卷
- 吉林艺术学院《电影剧作构成》2021-2022学年期末试卷
- 2024年公寓租赁消防合同范本
- 2024年大型园林转让合同范本
- 2024年大批油罐车转让协议书模板
- 2022年公务员多省联考《申论》真题(黑龙江省市卷)及答案解析
- 2022年内蒙古省公务员录用考试《行测》真题及答案解析
- 2022年公务员多省联考《申论》真题(宁夏C卷)及答案解析
- 吉林师范大学《世界现代史》2021-2022学年第一学期期末试卷
- 吉林师范大学《国画技法训练》2021-2022学年第一学期期末试卷
- 《融媒体实务》教学课件(全)
- 六年级上册美术课件-11.我爱运动 |苏少版 (共18张PPT)
- 人教鄂教版四年级上册《声音的产生》课件
- (完整版)标书密封条格式word
- 二年级上册科学课件-《4.神奇的纸》教科版 (共20张PPT)
- 《关于汉语规范化的意义探析》
- 《应用光学》第二版 胡玉禧 第二章 作业参考题解
- 大学生职业生涯规划与就业指导课件(全套)
- CT影像诊断学课件
- 中医医院骨伤科医疗质量管理检查评分细则
- 带状疱疹病例讨论
评论
0/150
提交评论