山西省朔州市窝窝会中学2022-2023学年高一数学文期末试题含解析_第1页
山西省朔州市窝窝会中学2022-2023学年高一数学文期末试题含解析_第2页
山西省朔州市窝窝会中学2022-2023学年高一数学文期末试题含解析_第3页
山西省朔州市窝窝会中学2022-2023学年高一数学文期末试题含解析_第4页
山西省朔州市窝窝会中学2022-2023学年高一数学文期末试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省朔州市窝窝会中学2022-2023学年高一数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.方程有两个实根,且满足,则m的取值范围是A.

B.(-∞,-1)∪(5,+∞)C.

D.参考答案:A2.棱长都是的三棱锥的表面积为(

).A.2 B. C.3 D.4参考答案:B略3.已知函数若则(

) A.B. C.D.与的大小不能确定参考答案:B略4.等差数列{an}满足,则其前10项之和为()A.-9 B.-15 C.15 D.参考答案:D由已知(a4+a7)2=9,所以a4+a7=±3,从而a1+a10=±3.所以S10=×10=±15.故选D.5.三个数a=log20.4,b=0.42,c=20.4的大小关系为()A.b<a<c B.a<c<b C.a<b<c D.b<c<a参考答案:C【考点】对数值大小的比较.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵a=log20.4<0,0<b=0.42,<1,c=20.4>1,∴a<b<c.故选:C.6.圆与圆的位置关系为A.内切

B.相交

C.外切

D.相离参考答案:A7.sin3x=3sinx的一个充要条件是()A.sinx=0 B.cosx=0 C.sinx=1 D.cosx=1参考答案:A【考点】必要条件、充分条件与充要条件的判断.【分析】利用sin3x=3sinx﹣4sin3x,代入化简即可得出.【解答】解:∵sin3x=3sinx﹣4sin3x,∴sin3x=3sinx?sinx=0故选:A.8.函数(

)A.在上递增

B.在上递增,在上递减

C.在上递减

D.在上递减,在上递增参考答案:A略9.设函数f(x)是定义在R上的奇函数,且f(x)=,则g[f(﹣8)]=()A.﹣1 B.﹣2 C.1 D.2参考答案:A【考点】函数的值.【分析】先求出f(﹣8)=﹣f(8)=﹣log39=﹣2,从而得到g[f(﹣8)]=g(﹣2)=f(﹣2)=﹣f(2),由此能求出结果.【解答】解:∵函数f(x)是定义在R上的奇函数,且f(x)=,∴f(﹣8)=﹣f(8)=﹣log39=﹣2,∴g[f(﹣8)]=g(﹣2)=f(﹣2)=﹣f(2)=﹣log33=﹣1.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.10.在△ABC中,已知sinC=2sin(B+C)cosB,那么△ABC一定是()A.等腰直角三角形

B.等腰三角形

C.直角三角形

D.等边三角形参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.已知函数,若函数g(x)=|f(x)|﹣a有四个不同零点x1,x2,x3,x4,且x1<x2<x3<x4,则的最小值为

.参考答案:2016【考点】根的存在性及根的个数判断.【分析】画出函数y=|f(x)|的图象,由题意得出a的取值范围和x1x2,x3+x4的值,再利用二次函数配方法即可求出最小值.【解答】解:由题意,画出函数y=|f(x)|的图象,如图所示,又函数g(x)=a﹣|f(x)|有四个零点x1,x2,x3,x4,且x1<x2<x3<x4,所以0<a≤2,且log2(﹣x1)=﹣log2(﹣x2)=2﹣x3=x4﹣2,所以x1x2=1,x3+x4=4,则=a2﹣2a+2017=(a﹣1)2+2016,当a=1时,取得最小值2016.故答案为:2016.12.已知正四棱锥的底面边长为2,侧棱长为,则侧面与底面所成的二面角为.参考答案:60°【考点】二面角的平面角及求法.【专题】计算题;空间角.【分析】过S作SO⊥平面ABCD,垂足为O,则O为ABCD的中心,取CD中点E,连接OE,则OE⊥CD,易证∠SEO为侧面与底面所成二面角的平面角,通过解直角三角形可得答案.【解答】解:过S作SO⊥平面ABCD,垂足为O,则O为ABCD的中心,取CD中点E,连接OE,则OE⊥CD,由三垂线定理知CD⊥SE,所以∠SEO为侧面与底面所成二面角的平面角,在Rt△SOE中,SE===2,OE=1,所以cos∠SEO=,则∠SEO=60°,故答案为:60°.【点评】本题考查二面角的平面角及其求法,考查学生推理论证能力,属中档题.13.式子的值为

.参考答案:略14.已知函数的定义域是一切实数,则m的取值范围是______参考答案:15.(5分)一长方体的各顶点均在同一个球面上,且一个顶点上的三条棱长分别为1,,3,则这个球的表面积为

.参考答案:16π考点: 球的体积和表面积.专题: 计算题;空间位置关系与距离.分析: 求出长方体的对角线的长,就是外接球的直径,然后求出球的表面积.解答: 由题意可知长方体的对角线的长,就是外接球的直径,所以球的直径:=4,所以外接球的半径为:2.所以这个球的表面积:4π×22=16π.故答案为:16π.点评: 本题考查球内接多面体,球的体积和表面积的求法,考查计算能力.16.(5分)若点P(﹣sinα,cosα)在角β的终边上,则β=

(用α表示).参考答案:考点: 任意角的三角函数的定义.专题: 三角函数的求值.分析: 根据角的终边之间的关系即可求得结论.解答: ∵﹣sinα=sin(﹣α)=cos()=cos(2kπ+)cosα=sin()=sin(2kπ+)故点P(﹣sinα,cosα)为点P(cos(2kπ+),sin(2kπ+)).由点P(﹣sinα,cosα)在角β终边上,∴.故答案为:.点评: 本题主要考查任意角的三角函数的定义,以及三角函数的诱导公式的应用,比较基础.(5分)已知偶函数f(x)对任意x∈R满足f(2+x)=f(2﹣x),且当﹣2≤x≤0时,f(x)=log2(1﹣x),则f的值为

.【答案】1【解析】考点: 抽象函数及其应用.专题: 计算题;函数的性质及应用.分析: 依题意,可知f(x+4)=f(﹣x)=f(x)?函数f(x)是周期为4的函数,于是可求得f的值.解答: ∵f(2+x)=f(2﹣x),即f(x)=f(4﹣x),∴其图象关于直线x=2对称,又函数f(x)为偶函数,其图象关于y轴对称,∴f(x+4)=f(﹣x)=f(x),∴函数f(x)是周期为4的函数,又当﹣2≤x≤0时,f(x)=log2(1﹣x),∴f=f(503×4+1)=f(1)=f(﹣1)=1,故答案为:1.点评: 本题考查抽象函数及其应用,着重考查函数的周期性、奇偶性与对称性,属于中档题.(5分)定义在区间(0,)上的函数y=6cosx的图象与y=5tanx的图象的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图象交于点P2,则线段PP2的长为

.【答案】【解析】考点: 余弦函数的图象;正切函数的图象.专题: 三角函数的图像与性质.分析: 先将求P1P2的长转化为求sinx的值,再由x满足6cosx=5tanx可求出sinx的值,从而得到答案.解答: 线段P1P2的长即为sinx的值,且其中的x满足6cosx=5tanx,解得sinx=.线段P1P2的长为,故答案为:.点评: 本题主要考查考查三角函数的图象、体现了转化、数形结合的数学思想,属于基础题.(5分)若关于x的方程2cos2x﹣sinx+a=0有实根,则a的取值范围是

.【答案】【解析】考点: 同角三角函数间的基本关系.专题: 三角函数的求值.分析: 根据已知方程表示出a,利用同角三角函数间的基本关系变形,利用二次函数的性质及正弦函数的值域求出a的最大值与最小值,即可确定出a的范围.解答: 已知方程变形得:2﹣2sin2x﹣sinx+a=0,即a=2sin2x+sinx﹣2=2(sinx+)2﹣,∵﹣1≤sinx≤1,∴当sinx=﹣时,a取得最小值﹣;当sinx=1时,a取得最大值1,则a的取值范围是[﹣,1].故答案为:[﹣,1].点评: 此题考查了同角三角函数间基本关系,熟练掌握基本关系是解本题的关键.17.若函数f(x+1)=x,则f(6)=___________。参考答案:5三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(10分)已知函数f(x)=ax(a>0,a≠1)的图象过点(2,9),g(x)=logbx+f(x)且g(2)=10(1)求a、b的值.(2)若g(x+1)﹣3f(x)<1,求x的取值范围.参考答案:考点: 函数单调性的性质.专题: 函数的性质及应用.分析: (1)利用待定系数法建立方程关系即可求a、b的值.(2)化简不等式,利用指数函数和对数函数的性质进行求解即可.解答: (1)∵f(x)=ax(a>0,a≠1)的图象过点(2,9),∴a2=9,解得a=3,则f(x)=3x,∵g(x)=logbx+f(x)且g(2)=10∴g(2)=logb2+f(2)=10,即logb2=10﹣f(2)=10﹣9=1,解得b=2.即a=3,b=2.(2)∵,∴由,解得0<x+1<2,即﹣1<x<1.点评: 本题主要考查指数函数和对数函数的解析式以及不等式的求解,利用待定系数法是解决本题的关键.19.已知函数.(1)求函数f(x)的最小正周期;(2)求函数的最大值及取得最大值时自变量X的取值集合;(3)求函数的单调递减区间.参考答案:20.已知f(x)是定义在上的奇函数,且f(1)=1,若a,b∈,a+b≠0时,有成立.(Ⅰ)判断f(x)在上的单调性,并证明.(Ⅱ)解不等式:(Ⅲ)若f(x)≤m2﹣2am+1对所有的a∈恒成立,求实数m的取值范围.参考答案:【考点】奇偶性与单调性的综合.【分析】(Ⅰ)由f(x)在上为奇函数,结合a+b≠0时有成立,利用函数的单调性定义可证出f(x)在上为增函数;(II)根据函数的单调性,化原不等式为﹣1≤x+<≤1,解之即得原不等式的解集;(III)由(I)结论化简,可得f(x)≤m2﹣2am+1对所有的a∈恒成立,即m2﹣2am≥0对所有的a∈恒成立,利用一次函数的性质并解关于m的二次不等式,即可得到实数m的取值范围.【解答】解:(I)f(x)在上为增函数,证明如下:设x1,x2∈,且x1<x2,在中令a=x1、b=﹣x2,可得,∵x1<x2,∴x1﹣x2<0,又∵f(x)是奇函数,得f(﹣x2)=﹣f(x2),∴.∴f(x1)﹣f(x2)<0,即f(x1)<f(x2)故f(x)在上为增函数….(II)∵f(x)在上为增函数,∴不等式,即﹣1≤x+<≤1解之得x∈上为增函数,且最大值为f(1)=1,因此,若f(x)≤m2﹣2am+1对所有的a∈恒成立,即1≤m2﹣2am+1对所有的a∈恒成立,得m2﹣2am≥0对所有的a∈恒成立∴m2﹣2m≥0且m2+2m≥0,解之得m≤﹣2或m≥2或m=0即满足条件的实数m的取值范围为{m|m≤﹣2或m≥2或m=0}.21.已知定义在R上的函数是奇函数.

(I)求实数a的值;

(Ⅱ)判断的单调性,并用单调性定义证明;

(III)若对任意的,不等式恒成立,求实数k的取值范围.参考答案:(1);(2)增函数;(3)略22.交通指数是指交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,记交通指数为T,其范围为[0,10],分别有五个级别:,畅通;,基本畅通;,轻度拥堵;,中度拥堵;,严重拥堵.在晚高峰时段(),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的频率分布直方图如图所示.(1)求出轻度拥堵、中度拥堵、严重拥堵的路段的个数;(2)用分层抽样的方法从轻度拥堵、中度拥堵、严重拥堵的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;(3)从(2)中抽取的6个路段中任取2个,求至少有1个路段为轻度拥堵的概率.参考答案:(1)轻度拥堵、中度拥堵、严重拥堵的路段的个数分别为6,9,3;(2)从交通指数在[4,6),[6,8),[8,10]的路段中分别抽取的个数为2,3,1;(3)【分析】(1)根据在频率分布直方图中,小长方形的面积表示各组的频率,可以求出频率,再根据频数等于频率乘以样本容量,求出频数;(2)根据(1)求出拥堵路段的个数,求出每层之间的占有比例,然后求出每层的个数;(3)先求出从(2)中抽取的6个路段中任取2个,有多少种可能情况,然后求出至少有1个路段为轻度拥堵有多少种可能情况,根据古典概型概率公式求出.【详解】(1)由频率分布直方图得,这20个交通路段中,轻度拥堵的路段有(0.1+0.2)×1×20=6(个),中度拥堵的路段有(0.25+0.2)×1×20=9(个),严重拥堵的路段有(0.1+0.05)×1×20=3(个).(2)由(1)知,拥堵路段共有6+9+3=18

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论