




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省岳阳市黄金中学2022-2023学年高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.复数在复平面内对应的点在(
)A.实轴上 B.虚轴上 C.第一象限 D.第二象限参考答案:B【分析】利用复数的乘法法则将复数表示为一般形式,即可得出复数在复平面内对应的点的位置。【详解】,对应的点的坐标为,所对应的点在虚轴上,故选:B。【点睛】本题考查复数对应的点,考查复数的乘法法则,关于复数问题,一般要利用复数的四则运算法则将复数表示为一般形式进行解答,考查计算能力,属于基础题。2..若a,b,c均为单位向量,且a·b=0,(a-c)·(b-c)≤0,则|a+b-c|的最大值为()A.-1
B.1C.
D.2参考答案:B3.已知等差数列的公差为2,若,成等比数列,则等于(
)A.4
B.6
C.8
D.10参考答案:B略4.已知正实数满足,则的最小值为(
)A.
B.4
C.
D.参考答案:D5.等比数列{an}中,a6=6,a9=9,则a3等于()A.4 B. C. D.2参考答案:A【考点】等比数列的性质.【分析】在等比数列{an}中,若m,n,p,q∈N*,则am?an=ap?aq.借助这个公式能够求出a3的值.【解答】解:∵3+9=6+6,∴==4.故选A.【点评】本题考查等比数列的性质和应用,解题时要注意等比数列通项公式的灵活运用.6.已知函数f(x)在R上有导函数,f(x)图象如图所示,则下列不等式正确的是()A.B.C.D.参考答案:A【分析】作出三点处的切线,比较斜率即可.【详解】如图,分别作曲线三处的切线,设切线的斜率分别为,易知,又,所以.故选A.【点睛】本题考查导数的几何意义,考查直线斜率的关系,属于基础题.7.给出定义:若函数在D上可导,即存在,且导函数在D上也可导,则称?(x)在D上存在二阶导函数,记,若在D上恒成立,则称?(x)在D上为凸函数,以下四个函数在(0,)上不是凸函数的是(
)A.?(x)=sinx+cosx
B.?(x)=lnx-2xC.?(x)=-x3+2x-1
D.?(x)=xex参考答案:D略8.四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有(
)A.150种
B.147种
C.144种
D.141种参考答案:D略9.在中,角,,的对边分别为,,,且,则(
)A.
B.
C.
D.参考答案:A10.已知角的终边与单位圆交于点,则的值为(
)A. B. C. D.参考答案:B【分析】根据已知角的终边与单位圆交于点,结合三角函数的定义即可得到的值.【详解】因为角的终边与单位圆交于点,所以,所以,故选B.【点睛】该题考查是有关已知角终边上一点求其三角函数值的问题,涉及到的知识点有三角函数的定义,属于简单题目.二、填空题:本大题共7小题,每小题4分,共28分11.曲线C:在x=0处的切线方程为________.参考答案:12.已知,则实数m=_______.参考答案:2或【分析】先求得,解即可得解.【详解】=解得故答案为2或【点睛】本题考查了复数的模的计算,属于基础题.13.抛物线y2=8x的准线与x轴相交于点P,过点P作斜率为k(k>0)的直线交抛物线于A、B两点,F为抛物线的焦点,若|FA|=2|FB|,则k=.参考答案:【考点】抛物线的简单性质.【分析】设出A,B的坐标,再设出AB的方程,联立直线方程和抛物线方程,由焦半径结合|FA|=2|FB|求得A的坐标,代入两点求斜率公式得答案.【解答】解:设A(x1,y1),B(x2,y2)由已知|FA|=2|FB|,得:x1+2=2(x2+2),即x1=2x2+2,①∵P(﹣2,0),则AB的方程:y=kx+2k,与y2=8x联立,得:k2x2+(4k2﹣8)x+4k2=0,则x1x2=4,②由①②得x2=1,则A(1,),∴k==.故答案为:.14.已知向量=(k,12),=(4,5),=(﹣k,10),且A、B、C三点共线,则k=.参考答案:【考点】9K:平面向量共线(平行)的坐标表示;I6:三点共线.【分析】利用三点共线得到以三点中的一点为起点,另两点为终点的两个向量平行,利用向量平行的坐标形式的充要条件列出方程求出k.【解答】解:向量,∴又A、B、C三点共线故(4﹣k,﹣7)=λ(﹣2k,﹣2)∴k=故答案为15.已知双曲线(a>0,b>0)的一条渐近线过点,且双曲线的一个焦点为,则双曲线的方程为.参考答案:【考点】双曲线的简单性质.【分析】利用双曲线的渐近线结果的点,可得a,b关系式,利用焦点坐标求出c,然后求解a,b即可得到双曲线方程.【解答】解:双曲线(a>0,b>0)的一条渐近线过点,可得2b=,双曲线的一个焦点为,可得c=,即a2+b2=7,解得a=2,b=,所求的椭圆方程为:.故答案为:.16.已知命题P:方程x2+mx+1=0有两个不等的负实根.命题Q:方程4x2+4(m﹣2)x+1=0无实根.若“P或Q”为真,“P且Q”为假,则实数m的取值范围是
.参考答案:(1,2]∪[3,+∞)【考点】复合命题的真假.【分析】利用一元二次方程的实数根与判别式的关系、不等式的解法可得命题P与Q的m的取值范围,再由“P或Q”为真,“P且Q”为假,可得P与Q必然一个为真一个为假.即可得出.【解答】解:命题P:方程x2+mx+1=0有两个不等的负实根.∴,解得m>2.命题Q:方程4x2+4(m﹣2)x+1=0无实根.△=16(m﹣2)2﹣16<0,解得:1<m<3.若“P或Q”为真,“P且Q”为假,∴P与Q必然一个为真一个为假.∴或,解得1<m≤2,或m≥3.则实数m的取值范围是(1,2]∪[3,+∞).故答案为:(1,2]∪[3,+∞).17.命题:,,则命题的否定:
参考答案:,略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.新高考3+3最大的特点就是取消文理科,除语文、数学、外语之外,从物理、化学、生物、政治、历史、地理这6科中自由选择三门科目作为选考科目.某研究机构为了了解学生对全理(选择物理、化学、生物)的选择是否与性别有关决定从某学校高一年级的650名学生中随机抽取男生、女生各25人进行模拟选科经统计,选择全理的人数比不选全理的人数多10人(1)请完成下面的2×2列联表;
选择全理不选择全理合计男生
5
女生
合计
(2)估计有多大把握认为选择全理与性别有关,并说明理由.附:,其中n=a+b+c+dP(K2≥k)0.150.100.050.0250.0100.0050.001k2.0722.0763.8415.0246.6357.87910.828
参考答案:(1)见解析(2)有99.5%的把握认为选择全理与性别有关【分析】(1)根据男、女生人数以及选择全理的人数比不选全理的人数多10人填写表格;(2)计算的值,然后与表格所给数据作比对,从而得出有多大把握认为选择全理与性别有关.【详解】(1)依题意可得列联表:
选择全理不选择全理合计男生20525女生101525合计302050
(2),∴有99.5%的把握认为选择全理与性别有关.【点睛】本题考查独立性检验,难度较易.计算出的值后,要找到表格中最大的且比小的数值,从而计算出相应百分比的把握.19.中国海警辑私船对一艘走私船进行定位:以走私船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度).中国海警辑私船恰在走私船正南方18海里A处(如图).现假设:①走私船的移动路径可视为抛物线y=x2;②定位后中国海警缉私船即刻沿直线匀速前往追埔;③中国海警辑私船出发t小时后,走私船所在的位置的横坐标为2t.(1)当t=1,写出走私船所在位置P的纵坐标,若此时两船恰好相遇,求中国海警辑私船速度的大小;(2)问中国海警辑私船的时速至少是多少海里才能追上走私船?参考答案:【考点】函数模型的选择与应用.【专题】应用题;函数思想;综合法;函数的性质及应用.【分析】(1)t=1时,确定P的横坐标,代入抛物线方程可得P的纵坐标,利用|AP|,即可确定中国海警辑私船速度的大小;(2)设中国海警辑私船的时速为v海里,经过t小时追上走私船,此时位置为(2t,9t2),从而可得v关于t的关系式,利用基本不等式,即可得到结论.【解答】解:(1)t=1时,P的横坐标xP=2,代入抛物线方程y=x2中,得P的纵坐标yP=9.由A(0,﹣18),可得|AP|=,得中国海警辑私船速度的大小为海里/时;(2)设中国海警辑私船的时速为v海里,经过t小时追上失事船,此时位置为(2t,9t2).由vt=|AP|=,整理得v2=81(t2+)+352因为t2+≥4,当且仅当t=时等号成立,所以v2≥81×4+352=262,即v≥26.因此,中国海警辑私船的时速至少是26海里才能追上走私船.【点评】本题主要考查函数模型的选择与运用.选择恰当的函数模型是解决此类问题的关键,属于中档题.20.已知.参考答案:21.在选举过程中常用差额选举(候选人数多于当选人数)。某班选举班长,具体方法是:筹备选举,由班主任提名候选人,同学投票,验票统计,若得票多者,则选为班长;若票数相同则由班主任决定谁当选。请用流程图表示该选举的过程参考答案:略22.(本小题12分)如图,在正方体中,,分别为棱,的中点.
(1)求证:∥平面;
(2)求证:平面⊥平面.参考答案:(1)连结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店翻新垫资装修合同范本
- 2025家居定制装修合同示范文本
- 2025物业绿化委托的合同书
- 2025房屋租赁合同主体变更协议书
- 潜水船租赁合同
- 遗产放弃继承合同范本
- 工程项目测绘合同协议书范本
- 土地临时租赁合同
- 2025年签订租赁合同的步骤详解
- 2025委托合同范本标准咨询服务的委托合同
- 2025年内蒙古中考一模英语试题(原卷版+解析版)
- 银行案件防控课件
- 2025年江苏省安全员B证考试题库附答案
- 科级试用期满工作总结(4篇)
- 历史-安徽省蚌埠市2025届高三年级第二次教学质量检查考试(蚌埠二模)试题和答案
- 2025年从大模型、智能体到复杂AI应用系统的构建报告-以产业大脑为例-浙江大学(肖俊)
- 2025年浙江省金华市中考一模数学模拟试题(含答案)
- 外研版(2025新版)七年级下册英语期中复习:Unit 1~3+期中共4套学情调研测试卷(含答案)
- 基于高中思想政治学科核心素养的教学研究与实践PPT课件
- 矿山及其他工程破损山体植被恢复技术(DOC25页)
- 铝合金门窗、百叶施工组织设计
评论
0/150
提交评论