版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
5.4.2正弦函数、余弦函数的性质第5章三角函数人教A版2019必修第一册学习目标探究:类比以往对函数性质的研究,你认为应研究正弦函数、余弦函数的哪些性质?观察它们的图象,你能发现它们具有哪些性质?根据研究函数的经验,我们要研究正弦函数、余弦函数的单调性、奇偶性、最大(小)值等.另外,三角函数是刻画“周而复始”现象的数学模型,与此对应的性质是特别而重要的.1.周期性1.周期性
x∈R;
解题方法(求函数最小正周期的常用方法)思考:回顾例2的解答过程,你能发现这些函数的周期与解析式中哪些量有关吗?思考:知道一个函数具有周期性和奇偶性,对研究它的图象与性质有什么帮助?sin(-x)=-sinx(xR)
y=sinx(xR)x6yo--12345-2-3-41
是奇函数x6o--12345-2-3-41
ycos(-x)=cosx(xR)
y=cosx(xR)是偶函数定义域关于原点对称
正弦、余弦函数的奇偶性3.单调性3.单调性x↗0↗↗↗sinx-1↗0↗1↘0↘-1x↗↗0↗↗cosx-1↗0↗1↘0↘-1yxoyxo4.最大值与最小值4.最大值与最小值从上述对正弦函数、余弦函数的单调性的讨论中容易得到,解:容易知道,这两个函数都有最大值、最小值.解题方法(三角函数的值域问题解题思路)分析:可利用三角函数的单调性比较两个同名三角函数值的大小.为此,先用诱导公式将已知角化为同一单调区间内的角,然后再比较大小.解题方法(比较两个三角函数值的大小)解题方法(求单调区间的步骤)正弦函数的图像探究余弦函数的图像问题:它们的图像有何对称性?中心对称:将图像绕对称中心旋转180度后所得的曲线能够和原来的曲线重合.轴对称:将图像绕对称轴折叠180度后所得的曲线能够和原来的曲线重合.正弦函数的图像对称轴:对称中心:余弦函数的图像对称轴:对称中心:课本练习(1)奇函数;(3)奇函数;(2)偶函数;(4)奇函数.解题方法(判断函数奇偶性的方法)判断函数奇偶性的方法(1)利用定义判断一个函数f(x)的奇偶性,要考虑两方面:①函数的定义域是否关于原点对称;②f(-x)与f(x)的关系;(2)判断函数的奇偶性常用方法是:①定义法;②图象法.随堂检测
正弦、余弦函数的奇偶性、单调性
奇偶性
单调性(单调区间)奇函数偶函数[
+2k
,
+2k],kZ单调递增[
+2k
,
+2k],kZ单调递减[
+2k
,
2k],kZ单调递增[2k
,
2k+
],kZ单调递减函数余弦函数正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉首大学《电工与电子技术》2021-2022学年期末试卷
- 《机床夹具设计》试题14
- 吉林艺术学院《影视概念设计解析》2021-2022学年第一学期期末试卷
- 吉林艺术学院《视唱Ⅱ》2021-2022学年第一学期期末试卷
- 吉林艺术学院《和声Ⅱ》2021-2022学年第一学期期末试卷
- 珠海离婚协议书范文
- 2024年多方合作合同范本
- 吉林师范大学《信息动画设计》2021-2022学年第一学期期末试卷
- 2022年公务员多省联考《申论》真题(重庆二卷)及答案解析
- 女婿与女婿离婚协议书范文模板
- 优秀工作总结范文:阀门专业技术工作总结
- 按键外观及可靠性测试检验标准
- 安防监控系统室外施工安装规范标准
- 胸痛鉴别诊断
- 元明粉比重表
- 房地产估价理论与方法重要公式整理
- 房地产项目投资成本测算参考表
- 提高护士对抢救药品知晓率PDCA案例精编版
- 大学英语四级改错题12篇
- 正余弦定理知识点权威总结18页
- 浅议小升初数学教学衔接
评论
0/150
提交评论