生成式AI和就业:对工作数量和质量的潜在全球影响分析+Generative+AI+and+Jobs:A+global+Analysis+of+Potential+Effects+on+Job+Quantity+and+Quality_第1页
生成式AI和就业:对工作数量和质量的潜在全球影响分析+Generative+AI+and+Jobs:A+global+Analysis+of+Potential+Effects+on+Job+Quantity+and+Quality_第2页
生成式AI和就业:对工作数量和质量的潜在全球影响分析+Generative+AI+and+Jobs:A+global+Analysis+of+Potential+Effects+on+Job+Quantity+and+Quality_第3页
生成式AI和就业:对工作数量和质量的潜在全球影响分析+Generative+AI+and+Jobs:A+global+Analysis+of+Potential+Effects+on+Job+Quantity+and+Quality_第4页
生成式AI和就业:对工作数量和质量的潜在全球影响分析+Generative+AI+and+Jobs:A+global+Analysis+of+Potential+Effects+on+Job+Quantity+and+Quality_第5页
已阅读5页,还剩72页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ILOWorkingPaper96

August/2023

X

GenerativeAIandJobs:Aglobal

analysisofpotentialeffectsonjob

quantityandquality

Authors/PawełGmyrek,JanineBerg,DavidBescond

Copyright©InternationalLabourOrganization2023

ThisisanopenaccessworkdistributedundertheCreativeCommonsAttribution4.0InternationalLicense(

/licenses/by/4.0/

).Userscanreuse,share,adaptandbuildupontheoriginalwork,asdetailedintheLicense.TheILOmustbeclearlycreditedastheown-eroftheoriginalwork.TheuseoftheemblemoftheILOisnotpermittedinconnectionwithusers’work.

Attribution–Theworkmustbecitedasfollows:Gmyrek,P.,Berg,J.,Bescond,D.GenerativeAIandJobs:Aglobalanalysisofpotentialeffectsonjobquantityandquality.ILOWorkingPaper96.

Geneva:InternationalLabourOffice,2023.

Translations–Incaseofatranslationofthiswork,thefollowingdisclaimermustbeaddedalongwiththeattribution:ThistranslationwasnotcreatedbytheInternationalLabourOrganization(ILO)andshouldnotbeconsideredanofficialILOtranslation.TheILOisnotresponsibleforthecontentoraccuracyofthistranslation.

Adaptations–Incaseofanadaptationofthiswork,thefollowingdisclaimermustbeaddedalongwiththeattribution:ThisisanadaptationofanoriginalworkbytheInternationalLabourOrganization(ILO).ResponsibilityfortheviewsandopinionsexpressedintheadaptationrestssolelywiththeauthororauthorsoftheadaptationandarenotendorsedbytheILO.

ThisCClicensedoesnotapplytonon-ILOcopyrightmaterialsincludedinthispublication.Ifthematerialisattributedtoathirdparty,theuserofsuchmaterialissolelyresponsibleforclearingtherightswiththerightholder.

Anydisputearisingunderthislicensethatcannotbesettledamicablyshallbereferredtoarbitra-tioninaccordancewiththeArbitrationRulesoftheUnitedNationsCommissiononInternationalTradeLaw(UNCITRAL).Thepartiesshallbeboundbyanyarbitrationawardrenderedasaresultofsucharbitrationasthefinaladjudicationofsuchadispute.

AllqueriesonrightsandlicensingshouldbeaddressedtotheILOPublishingUnit(RightsandLicensing),1211Geneva22,Switzerland,orbyemailto

rights@

.

ISBN9789220395356(print),ISBN9789220395363(webPDF),ISBN9789220395370(epub),ISBN9789220395387(mobi),ISBN9789220395394(html).ISSN2708-3438(print),ISSN2708-3446(digital)

/10.54394/FHEM8239

ThedesignationsemployedinILOpublications,whichareinconformitywithUnitedNationspractice,andthepresentationofmaterialthereindonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheILOconcerningthelegalstatusofanycountry,areaorterritoryorofitsauthorities,orconcerningthedelimitationofitsfrontiers.

Theresponsibilityforopinionsexpressedinsignedarticles,studiesandothercontributionsrestssolelywiththeirauthors,andpublicationdoesnotconstituteanendorsementbytheILOoftheopinionsexpressedinthem.

Referencetonamesoffirmsandcommercialproductsandprocessesdoesnotimplytheiren-dorsementbytheILO,andanyfailuretomentionaparticularfirm,commercialproductorpro-cessisnotasignofdisapproval.

InformationonILOpublicationsanddigitalproductscanbefoundat:

/publns

ILOWorkingPaperssummarizetheresultsofILOresearchinprogress,andseektostimulatediscussionofarangeofissuesrelatedtotheworldofwork.CommentsonthisILOWorkingPaperarewelcomeandcanbesentto

RESEARCH@

,

berg@

.

Authorizationforpublication:RichardSamans,DirectorRESEARCH

ILOWorkingPaperscanbefoundat:

/global/publications/working-papers

Suggestedcitation:

Gmyrek,P.,Berg,J.,Bescond,D.2023.GenerativeAIandJobs:Aglobalanalysisofpotentialef-fectsonjobquantityandquality,ILOWorkingPaper96(Geneva,ILO).

/10.54394/

FHEM8239

01ILOWorkingPaper96

Abstract

ThisstudypresentsaglobalanalysisofthepotentialexposureofoccupationsandtaskstoGenerativeAI,andspecificallytoGenerativePre-TrainedTransformers(GPTs),andthepossibleimplicationsofsuchexposureforjobquantityandquality.ItusestheGPT-4modeltoestimatetask-levelscoresofpotentialexposureandthenestimatespotentialemploymenteffectsatthegloballevelaswellasbycountryincomegroup.Despiterepresentinganupper-boundestimateofexposure,wefindthatonlythebroadoccupationofclericalworkishighlyexposedtothetech-nologywith24percentofclericaltasksconsideredhighlyexposedandanadditional58percentwithmedium-levelexposure.Fortheotheroccupationalgroups,thegreatestshareofhighlyex-posedtasksoscillatesbetween1and4percent,andmediumexposedtasksdonotexceed25percent.Asaresult,themostimportantimpactofthetechnologyislikelytobeofaugmentingwork–automatingsometaskswithinanoccupationwhileleavingtimeforotherduties–asop-posedtofullyautomatingoccupations.

Thepotentialemploymenteffects,whetheraugmentingorautomating,varywidelyacrosscoun-tryincomegroups,duetodifferentoccupationalstructures.Inlow-incomecountries,only0.4percentoftotalemploymentispotentiallyexposedtoautomationeffects,whereasinhigh-incomecountriesthesharerisesto5.5percent.Theeffectsarehighlygendered,withmorethandoubletheshareofwomenpotentiallyaffectedbyautomation.Thegreaterimpactisfromaugmenta-tion,whichhasthepotentialtoaffect10.4percentofemploymentinlow-incomecountriesand13.4percentofemploymentinhigh-incomecountries.However,sucheffectsdonotconsiderinfrastructureconstraints,whichwillimpedethepossibilityforuseinlower-incomecountriesandlikelyincreasetheproductivitygap.

Westressthattheprimaryvalueofthisanalysisisnotthepreciseestimates,butratherthein-sightsthattheoveralldistributionofsuchscoresprovidesaboutthenatureofpossiblechanges.Suchinsightscanencouragegovernmentsandsocialpartnerstoproactivelydesignpoliciesthatsupportorderly,fair,andconsultativetransitions,ratherthandealingwithchangeinareactivemanner.Moreover,thelikelyramificationsonjobqualitymightbeofgreaterconsequencethanthequantitativeimpacts,bothwithrespecttothenewjobscreatedbecauseofthetechnology,butalsothepotentialeffectsonworkintensityandautonomywhenthetechnologyisintegrat-edintotheworkplace.Forthisreason,wealsoemphasizetheneedforsocialdialogueandreg-ulationtosupportqualityemployment.

Abouttheauthors

PawełGmyrekisSeniorResearcherintheResearchDepartmentoftheILO.JanineBergisSeniorEconomistintheResearchDepartmentoftheILO.DavidBescondisDataScientistintheILO’sDepartmentofStatistics.

02ILOWorkingPaper96

Tableofcontents

Abstract

Abouttheauthors

Acronyms

01

01

05

X

Introduction

07

X

1

MethodsandData

1.1.ISCOdataonoccupationsandtasks

1.2.Promptdesignandsequence

10

11

12

X

2

AssessmentofthePredictions,RobustnessTestsandtheBoundsforAnalysis

17

X

3

Results

3.1.Automationvsaugmentation:distributionofscoresacrosstasksandoccupations

20

24

X

4

Exposedoccupationsasashareofemployment:globalandincome-basedestimates

4.1.AugmentationvsAutomation:ILOmicrodata

4.2.AugmentationvsAutomation:globalestimate

4.3.Thebigunknown

30

30

32

36

X

5

Managingthetransition:Policiestoaddressautomation,augmentationandthegrowingdigitaldivide

5.1Mitigatingthenegativeeffectsofautomation

5.2Ensuringjobqualityunderaugmentation

5.3Addressingthedigitaldivide

38

38

39

40

X

Conclusion

43

Appendix1.CountrieswithmissingISCO-084-digitdata:estimationprocedure45

References47

AcknowledgementsanduseofGPT51

03ILOWorkingPaper96

ListofFigures

Figure1.Meanautomationscoresbyoccupation,basedonISCOandGPTtasks21

Figure2.TaskswithmediumandhighGPT-exposure,byoccupationalcategory(ISCO1-digit)24

Figure3.Boxplotoftask-levelscoresbyISCO4d,groupedbyISCO1d25

Figure4.Augmentationvsautomationpotentialatoccupationallevel27

Figure5.Occupationswithhighautomationpotential28

Figure6.Occupationswithhighaugmentationpotential29

Figure7a.Automationvsaugmentationpotential:sharesoftotalemployment,microdata

for59countries30

Figure7b.Automationvsaugmentationpotential:sharesoftotalemploymentineachsex

(ILOmicrodata)31

Figure8.CountrycoveragebasedonthelevelofdigitsinISCO-08(ILOdata)33

Figure9a.Globalestimates:jobswithaugmentationandautomationpotentialasshareof

totalemployment34

Figure9b.Automationvsaugmentationpotential:sharesoftotalemploymentforeachsex

(globalestimate)35

Figure10.Occupationswithhighautomationpotential,byISCO4-digitandincomegroup36

Figure11a.The“BigUnknown”:occupationsbetweenaugmentationandautomationpotential37

Figure11b.The“BigUnknown”:shareoftotalemployment,byincomegroup(globalestimate)37

Figure11.Shareofpopulationnotusingtheinternet41

Figure12.Aclassicgrowthpath:incomeandoccupationaldiversification42

04ILOWorkingPaper96

ListofTables

Table1.ISCO-08Structureofoccupationsandtasksusedinthestudy11

Table2.SampleoftasksanddefinitionsfromISCOandpredictedbyGPT-414

Table3.Sampleoftask-levelscores(high-incomecountrycontext)15

Table4.aTestofscoreconsistency(100task-levelpredictions)17

Table4.bTaskswithhighautomationpotentialclusteredintothematic22

groups*

Table5.Groupingofoccupationsbasedontask-levelscores26

Table6.MicrodatacoveragebylevelsISCO-08:numberofcountries32

05ILOWorkingPaper96

Acronyms

3G

ThirdGeneration(referringtoagenerationofstandardsformobiletelecom-munications)

Ada

AlanguagemodelbyOpenAIusedtogenerateembeddings

AGI

ArtificialGeneralIntelligence

AI

ArtificialIntelligence

ANN

ArtificialNeuralNetwork

API

ApplicationProgrammingInterface

ATMs

AutomatedTellerMachines

CPU

CentralProcessingUnit

DL

DeepLearning

DOLE

DepartmentofLaborandEmployment

ESCO

EuropeanSkills,Competences,QualificationsandOccupations

GPTs

GenerativePre-TrainedTransformers

GPT-4

GenerativePre-TrainedTransformer4

GPU

GraphicsProcessingUnit

HIC

High-IncomeCountries

ICT

InformationandCommunicationsTechnology

ILO

InternationalLabourOrganization

ISCO

InternationalStandardClassificationofOccupations

ISCO-08

InternationalStandardClassificationofOccupations2008

K-Means

K-MeansClusteringAlgorithm

LFS

LabourForceSurveys

LIC

Low-IncomeCountries

LLMs

LargeLanguageModels

06ILOWorkingPaper96

LMIC

Lower-Middle-IncomeCountries

ML

MachineLearning

NLP

NaturalLanguageProcessing

OECD

OrganisationforEconomicCo-operationandDevelopment

O*NET

OccupationalInformationNetwork

OpenAI

OpenArtificialIntelligence(organization'sname)

Python

High-levelprogramminglanguage

RL

ReinforcementLearning

SD

StandardDeviation

SMEs

SmallandMedium-sizedEnterprises

UMIC

Upper-Middle-IncomeCountries

US

UnitedStates

USD

UnitedStatesDollar

UMIC

Upper-Middle-IncomeCountries

US

UnitedStates

07ILOWorkingPaper96

XIntroduction

Eachnewwaveoftechnologicalprogressintensifiesdebatesonautomationandjobs.CurrentdebatesonArtificialIntelligence(AI)andjobsrecallthoseoftheearly1900swiththeintroduc-tionofthemovingassemblyline,oreventhoseofthe1950sand1960s,whichfollowedtheintro-ductionoftheearlymainframecomputers.Whiletherehavebeensomenodstothealienationthattechnologycanbringbystandardizingandcontrollingworkprocesses,inmostcases,thedebateshavecentredontwoopposingviewpoints:theoptimists,whoviewnewtechnologyasthemeanstorelieveworkersfromthemostarduoustasks,andthepessimists,whoraisealarmabouttheimminentthreattojobsandtheriskofmassunemployment.

Whathaschangedindebatesontechnologyandworkers,however,isthetypesofworkersaf-fected.Whiletheadvancesintechnologyintheearly,midandevenlate-1900swereprimarilyfocusedonmanualworkers,technologicaldevelopmentsincethe2010s,inparticulartherapidprogressofMachineLearning(ML),hascentredontheabilityofcomputerstoperformnon-rou-tine,cognitivetasks,andbyconsequencepotentiallyaffectwhite-collarorknowledgeworkers.Inaddition,thesetechnologicaladvancementshaveoccurredinthecontextofmuchstrong-erinterconnectednessofeconomiesacrosstheglobe,leadingtoapotentiallylargerexposurethanlocation-based,factory-levelapplications.Yetdespitethesedevelopments,toanaverageworker,eveninthemosthighlydevelopedcountries,thepotentialimplicationsofAIhave,untilrecently,remainedlargelyabstract.

ThelaunchofChatGPTmarkedanimportantadvanceinthepublic’sexposuretoAItools.Inthisnewwaveoftechnologicaltransformation,machinelearningmodelshavestartedtoleavethelabsandbegininteractingwiththepublic,demonstratingtheirstrengthsandweaknessesindailyuse.ThechatfunctiondramaticallyshortenedthedistancebetweenAIandtheenduser,simultaneouslyprovidingaplatformforawiderangeofcustom-madeapplicationsandinno-vations.Giventhesesignificantadvancements,itisnotsurprisingthatconcernsoverpotentialjoblosshaveresurged.

WhileitisimpossibletopredicthowgenerativeAIwillfurtherdevelop,thecurrentcapabilitiesandfuturepotentialofthistechnologyarecentraltodiscussionsofitsimpactonjobs.Scepticstendtobelievethatthesemachinesarenothingmorethan“stochasticparrots”–powerfultextsummarizers,incapableof“learning”andproducingoriginalcontent,withlittlefutureforgen-eralpurposeuseandunsustainablecomputingcosts(Benderetal.2021).Ontheotherhand,morerecenttechnicalliteraturefocusedontestingthelimitsofthelatestmodelssuggestsanincreasingcapabilitytocarryout“novelanddifficulttasksthatspanmathematics,coding,vision,medicine,law,psychologyandmore”,andageneralabilitytoproduceresponsesexhibitingsomeformsofearly“reasoning”(Bubecketal.2023).Someassessmentsgoasfarassuggestingthatmachinelearningmodels,especiallythosebasedonlargeneuralnetworksusedbyGenerativePre-trainedTransformers(GPT,seeTextBox1),mighthavethepotentialtoeventuallybecomeageneral-purposetechnology(Goldfarb,Taska,andTeodoridis2023;Eloundouetal.2023).1Thiswouldhavemultipliereffectsontheeconomyandlabourmarkets,asnewproductsandservic-eswouldlikelyspringfromthistechnologicalplatform.

Associalscientists,wearenotinpositiontotakesidesinthesetechnicaldebates.Instead,wefocusonthealreadydemonstratedcapabilitiesofGPT-4,includingcustom-madechatbotswithretrievalofprivatecontent(suchascollectionsdocuments,e-mailsandothermaterial),natu-rallanguageprocessingfunctionsofcontentextraction,preparationofsummaries,automatedcontentgeneration,semantictextsearchesandbroadersemanticanalysisbasedontextem-beddings.LargeLanguageModels(LLMs)canalsobecombinedwithotherMLmodels,suchas

1Thethreemaincharacteristicsofgeneral-purposetechnologiesarepervasiveness,abilitytocontinueimprovingovertime,andabil-itytospawnfurtherinnovation(JovanovicandRousseau,2005).

08ILOWorkingPaper96

speech-to-textandtext-to-speechgeneration,potentiallyexpandingtheirinteractionwithdif-ferenttypesofhumantasks.Finally,thepotentialofinteractingwithlivewebcontentthroughcustomagentsandplugins,aswellasthemultimodal(notexclusivetotext,butalsocapableofreadingandgeneratingimage)characterofGPT-4makesitlikelythatthistypeoftechnologywillexpandintonewareas,therebyincreasingitsimpactonlabour.

Departingfromtheseobservations,thisstudyseekstoaddtheglobalperspectivetothealreadylivelydebateonpossiblechangesthatmayresultinthelabourmarketsasaconsequenceoftherecentadventofgenerativeAI.Westressthefocusofourworkontheconceptsof“exposure”and“potential”,whichdoesnotimplyautomation,butratherlistsoccupationsandassociatedemploymentfiguresforjobsthataremorelikelytobeaffectedbyGPT-4andsimilartechnologiesinthecomingyears.Theobjectiveofthisexerciseisnottoderiveheadlinefigures,butrathertoanalysethedirectionofpossiblechangesinordertofacilitatethedesignofappropriatepolicyresponses,includingthepossibleconsequencesonjobquality.

Theanalysisisbasedon4-digitoccupationalclassificationsandtheircorrespondingtasksintheISCO-08standard.ItusestheGPT-4modeltoestimateoccupationalandtask-levelscoresofex-posuretoGPTtechnologyandsubsequentlylinksthesescorestoofficialILOstatisticstoderiveglobalemploymentestimates.Wealsoapplyembedding-basedtextanalysisandsemanticclus-teringalgorithmstoprovideabetterunderstandingofthetypesoftasksthathaveahighauto-mationpotentialanddiscusshowtheautomatingandaugmentingeffectswillstronglydependonarangeofadditionalfactorsandspecificcountrycontext.

Wediscusstheresultsofthisanalysisinthebroadercontextoflabourmarkettransformations.Weputparticularfocusonthecurrentdisparitiesindigitalaccessacrosscountriesofdifferentincomelevels,thepotentialforthisnewwaveoftechnologicaltransformationtoaggravatesuchdisparities,andtheensuingconsequencesonproductivityandincome.Wealsogiveconsider-ationtojobswithhighestautomationandaugmentationpotentialanddiscussgender-specificdifferences.Theanalysisdoesnottakeintoaccountthenewjobsthatwillbecreatedtoaccom-panythetechnologicaladvancement.Twentyyearsago,therewerenosocialmediamanagers,thirtyyearsagotherewerefewwebdesigners,andnoamountofdatamodellingwouldhaverenderedaprioripredictionsconcerningavastarrayofotheroccupationsthathaveemergedinthepastdecades.AsdemonstratedbyAutoretal.(2022),some60percentofemploymentin2018intheUnitedStateswasinjobsthatdidnotexistinthe1940s.

Indeed,themainvalueofstudiessuchasthisoneisnotinthepreciseestimates,butratherinunderstandingthepossibledirectionofchange.Suchinsightsarenecessaryforproactivelyde-signingpoliciesthatcansupportorderly,fair,andconsultativetransitions,ratherthandealingwithchangeinareactivemanner.Forthisreason,wealsoemphasizethepotentialeffectsoftechnologicalchangeonworkingconditionsandjobqualityandtheneedforworkplaceconsul-tationandregulationtosupportthecreationofqualityemploymentandtomanagetransitionsinthelabourmarket.

Wehopethatthisresearchwillcontributetoneededpolicydebatesondigitaltransformationintheworldofwork.Whiletheanalysisoutlinespotentialimplicationsfordifferentoccupationalcategories,theoutcomesofthetechnologicaltransitionarenotpre-determined.Itishumansthatarebehindthedecisiontoincorporatesuchtechnologiesanditishumansthatneedtoguidethetransitionprocess.Itisourhopethatthisinformationcansupportthedevelopmentofpoliciesneededtomanagethesechangesforthebenefitofcurrentandfuturesocieties.Weintendtousethisbroadglobalstudyasanopeningtomorein-depthanalysesatcountrylevel,withaparticularfocusondevelopingcountries.

09ILOWorkingPaper96

XTextBox1:WhatareGPTs?

GenerativePre-TrainedTransformersbelongtothefamilyofLargeLanguageModels–atypeofMachineLearningmod-elbasedonneuralnetworks.The“generative”partreferstotheirabilitytoproduceoutputofacreativenature,whichinlanguagemodelscantaketheformofsentences,paragraphs,orentiretextstructures,withcharacteristicsoftenun-distinguishablefromthatproducedbyhumans.“Pre-trained”referstotheinitialtrainingonalargecorpusoftextdata,typicallythroughunsupervisedorself-supervisedlearning,duringwhichthemodellearnsaboutthetextstructurebytemporarilymaskingpartofthecontentandtryingtominimizeerrorsinthepredictionofthemaskedwords.Followingpre-training,suchmodelsarefurtherfine-tunedwiththeuseoflabelleddataandso-called“reinforcementlearning”,makingthemmoresuitableforspecifictasks.Thispartoftrainingisoftenperceivedasaspecializedjob,executedbyahandfuloftechnicalexperts.Inreality,itislabourintensiveandinvolvesmanyinvisiblecontributors(Dzieza2023).Itsprerequisiteistheproductionofvastamountsoflabelleddata,typicallydonebyworkersoncrowdsourcingplatforms.“Transformers”refertotheunderlyingmodelarchitecture,whichusesnumerousmechanisms,suchasattentionandself-attentionframeworks,todevelopweightsrelatedtotheimportanceoftextelements,suchaswordsinasentence,whicharesubsequentlyusedforpredictions(Vaswanietal.2017).

WhileGPTspecificallyreferstomodelsdevelopedbyOpenAI(GPT-1,2,3and4),thistypeofarchitectureisusedbymanymorelanguagemodelsalreadyavailablecommercially.ThelaunchofChatGPTon30November2022madeGPTsmorepopularamongthepublic,asitmadeitpossibleforindividualswithnoprogrammingknowledgetointeractwithGPT-3(andeventuallyGPT-4)throughachatbotfunctionwithahuman-liketone.Forresearchpurposesandmorecom-plexapplications,suchlanguagemodelsaretypicallymorepowerfulwhenusedthroughanApplicationProgrammingInterface(API).AnAPIisadeveloperaccesspointthatreliesonaquery-responseprotocolwiththeuseofprogrammingsoftware.Inourcase,werelyonaPythonscriptbasedonOpenAIlibrary,designedtoconnecttoGPT-4model,provideafine-tunedpromptandreceivearesponse,whichissubsequentlystoredinadatabaseonourserver.ThisenablesbulkprocessingoflargenumbersofrequestsandreliesontheGPT-4modelwithmoreparametersthanwhatisaccessiblethroughthepublicChatfunction.

10ILOWorkingPaper96

X1MethodsandData

Therearetwoprincipalapproachestotheanalysisofautomationofoccupations(GeorgieffandHyee2021).Thefirstistousedataonjobvacanciestounderstandhowdemandforspecificskillsevolvesovertime.Moststudiesusingthisapproachharnessdatafromonlinerecruitmentplat-forms(CammeraatandSquicciarini2021;Acemogluetal.2022)tomeasurethefrequencyofref-erencestoAI(ortoanyothertechnologyofinterest)inthetextofthejobdescription.Theseref-erencesarethenusedasaproxyforthedemandforspecificskillsand,byitsextension,aproxyfortherateoftechnologicaladoptionattheenterpriselevel.Thisapproachworkswellincoun-trieswithahighonlinepresenceinrecruitment,thoughitdoesnotalwayscapturetheindus-triesaffectedasaresultofsubcontracting.Theapproach,however,islesswellsuitedforaglobalstudycoveringcountrieswithlessonlinepresence,asmostvacanciesarenotadvertisedonon-lineplatformsbutrecruitedthroughothermeansofcommunication(GeorgieffandHyee2021).

Thesecondapproachistofocusonoccupationalstructures,withtheideaofestimatingtheau-tomationpotentialoftasksorskillsthatmakeupagivenjob.Theadvantageofthismethodisthatsuchoccupationalclassificationscaneasilybelinkedtoofficiallabourmarketstatistics,whichisofparticularimportanceforunderstandingglobal,regionalandincome-baseddiffer-entials.Thisstrandofliteratureisrich,butfrequentlymisunderstood,especiallywhenitcomestocommunicatingitsfindingstothepublic,asmediainterpretationstendtoblurthedistinc-tionbetweenautomationpotentialandactualdeploymentintheworkplace.Forexample,FreyandOsborne’s(2013,2017)influentialstudyhasbeencitedover12,000times,oftenfordiffer-enttypesofdoomsdaypronouncements,eventhoughtheauthorswereclearaboutthedistinc-tionbetweenpotentialandpredictedeffects.Arangeofstudiesfollowthisresearchtradition,attemptingtocalculatedifferenttypesofoccupationalautomationscoresinOECDcountries(Brynjolfsson,Mitchell,andRock2018;Felten,Raj,andSeamans2018;Felten,Raj,andSeamans2019;AcemogluandRestrepo2020;FossenandSorgner2022)orevencombiningoccupationalandjobpostingdata(GeorgieffandHyee2021).Someauthorshavealsotakenupthechallengeofproducingbetterestimatesfordevelopingcountries(BalliesterandElsheikhi2018),oftenbytryingtolinkdetailedoccupationaldataand

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论