版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ILOWorkingPaper96
August/2023
X
GenerativeAIandJobs:Aglobal
analysisofpotentialeffectsonjob
quantityandquality
Authors/PawełGmyrek,JanineBerg,DavidBescond
Copyright©InternationalLabourOrganization2023
ThisisanopenaccessworkdistributedundertheCreativeCommonsAttribution4.0InternationalLicense(
/licenses/by/4.0/
).Userscanreuse,share,adaptandbuildupontheoriginalwork,asdetailedintheLicense.TheILOmustbeclearlycreditedastheown-eroftheoriginalwork.TheuseoftheemblemoftheILOisnotpermittedinconnectionwithusers’work.
Attribution–Theworkmustbecitedasfollows:Gmyrek,P.,Berg,J.,Bescond,D.GenerativeAIandJobs:Aglobalanalysisofpotentialeffectsonjobquantityandquality.ILOWorkingPaper96.
Geneva:InternationalLabourOffice,2023.
Translations–Incaseofatranslationofthiswork,thefollowingdisclaimermustbeaddedalongwiththeattribution:ThistranslationwasnotcreatedbytheInternationalLabourOrganization(ILO)andshouldnotbeconsideredanofficialILOtranslation.TheILOisnotresponsibleforthecontentoraccuracyofthistranslation.
Adaptations–Incaseofanadaptationofthiswork,thefollowingdisclaimermustbeaddedalongwiththeattribution:ThisisanadaptationofanoriginalworkbytheInternationalLabourOrganization(ILO).ResponsibilityfortheviewsandopinionsexpressedintheadaptationrestssolelywiththeauthororauthorsoftheadaptationandarenotendorsedbytheILO.
ThisCClicensedoesnotapplytonon-ILOcopyrightmaterialsincludedinthispublication.Ifthematerialisattributedtoathirdparty,theuserofsuchmaterialissolelyresponsibleforclearingtherightswiththerightholder.
Anydisputearisingunderthislicensethatcannotbesettledamicablyshallbereferredtoarbitra-tioninaccordancewiththeArbitrationRulesoftheUnitedNationsCommissiononInternationalTradeLaw(UNCITRAL).Thepartiesshallbeboundbyanyarbitrationawardrenderedasaresultofsucharbitrationasthefinaladjudicationofsuchadispute.
AllqueriesonrightsandlicensingshouldbeaddressedtotheILOPublishingUnit(RightsandLicensing),1211Geneva22,Switzerland,orbyemailto
rights@
.
ISBN9789220395356(print),ISBN9789220395363(webPDF),ISBN9789220395370(epub),ISBN9789220395387(mobi),ISBN9789220395394(html).ISSN2708-3438(print),ISSN2708-3446(digital)
/10.54394/FHEM8239
ThedesignationsemployedinILOpublications,whichareinconformitywithUnitedNationspractice,andthepresentationofmaterialthereindonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheILOconcerningthelegalstatusofanycountry,areaorterritoryorofitsauthorities,orconcerningthedelimitationofitsfrontiers.
Theresponsibilityforopinionsexpressedinsignedarticles,studiesandothercontributionsrestssolelywiththeirauthors,andpublicationdoesnotconstituteanendorsementbytheILOoftheopinionsexpressedinthem.
Referencetonamesoffirmsandcommercialproductsandprocessesdoesnotimplytheiren-dorsementbytheILO,andanyfailuretomentionaparticularfirm,commercialproductorpro-cessisnotasignofdisapproval.
InformationonILOpublicationsanddigitalproductscanbefoundat:
/publns
ILOWorkingPaperssummarizetheresultsofILOresearchinprogress,andseektostimulatediscussionofarangeofissuesrelatedtotheworldofwork.CommentsonthisILOWorkingPaperarewelcomeandcanbesentto
RESEARCH@
,
berg@
.
Authorizationforpublication:RichardSamans,DirectorRESEARCH
ILOWorkingPaperscanbefoundat:
/global/publications/working-papers
Suggestedcitation:
Gmyrek,P.,Berg,J.,Bescond,D.2023.GenerativeAIandJobs:Aglobalanalysisofpotentialef-fectsonjobquantityandquality,ILOWorkingPaper96(Geneva,ILO).
/10.54394/
FHEM8239
01ILOWorkingPaper96
Abstract
ThisstudypresentsaglobalanalysisofthepotentialexposureofoccupationsandtaskstoGenerativeAI,andspecificallytoGenerativePre-TrainedTransformers(GPTs),andthepossibleimplicationsofsuchexposureforjobquantityandquality.ItusestheGPT-4modeltoestimatetask-levelscoresofpotentialexposureandthenestimatespotentialemploymenteffectsatthegloballevelaswellasbycountryincomegroup.Despiterepresentinganupper-boundestimateofexposure,wefindthatonlythebroadoccupationofclericalworkishighlyexposedtothetech-nologywith24percentofclericaltasksconsideredhighlyexposedandanadditional58percentwithmedium-levelexposure.Fortheotheroccupationalgroups,thegreatestshareofhighlyex-posedtasksoscillatesbetween1and4percent,andmediumexposedtasksdonotexceed25percent.Asaresult,themostimportantimpactofthetechnologyislikelytobeofaugmentingwork–automatingsometaskswithinanoccupationwhileleavingtimeforotherduties–asop-posedtofullyautomatingoccupations.
Thepotentialemploymenteffects,whetheraugmentingorautomating,varywidelyacrosscoun-tryincomegroups,duetodifferentoccupationalstructures.Inlow-incomecountries,only0.4percentoftotalemploymentispotentiallyexposedtoautomationeffects,whereasinhigh-incomecountriesthesharerisesto5.5percent.Theeffectsarehighlygendered,withmorethandoubletheshareofwomenpotentiallyaffectedbyautomation.Thegreaterimpactisfromaugmenta-tion,whichhasthepotentialtoaffect10.4percentofemploymentinlow-incomecountriesand13.4percentofemploymentinhigh-incomecountries.However,sucheffectsdonotconsiderinfrastructureconstraints,whichwillimpedethepossibilityforuseinlower-incomecountriesandlikelyincreasetheproductivitygap.
Westressthattheprimaryvalueofthisanalysisisnotthepreciseestimates,butratherthein-sightsthattheoveralldistributionofsuchscoresprovidesaboutthenatureofpossiblechanges.Suchinsightscanencouragegovernmentsandsocialpartnerstoproactivelydesignpoliciesthatsupportorderly,fair,andconsultativetransitions,ratherthandealingwithchangeinareactivemanner.Moreover,thelikelyramificationsonjobqualitymightbeofgreaterconsequencethanthequantitativeimpacts,bothwithrespecttothenewjobscreatedbecauseofthetechnology,butalsothepotentialeffectsonworkintensityandautonomywhenthetechnologyisintegrat-edintotheworkplace.Forthisreason,wealsoemphasizetheneedforsocialdialogueandreg-ulationtosupportqualityemployment.
Abouttheauthors
PawełGmyrekisSeniorResearcherintheResearchDepartmentoftheILO.JanineBergisSeniorEconomistintheResearchDepartmentoftheILO.DavidBescondisDataScientistintheILO’sDepartmentofStatistics.
02ILOWorkingPaper96
Tableofcontents
Abstract
Abouttheauthors
Acronyms
01
01
05
X
Introduction
07
X
1
MethodsandData
1.1.ISCOdataonoccupationsandtasks
1.2.Promptdesignandsequence
10
11
12
X
2
AssessmentofthePredictions,RobustnessTestsandtheBoundsforAnalysis
17
X
3
Results
3.1.Automationvsaugmentation:distributionofscoresacrosstasksandoccupations
20
24
X
4
Exposedoccupationsasashareofemployment:globalandincome-basedestimates
4.1.AugmentationvsAutomation:ILOmicrodata
4.2.AugmentationvsAutomation:globalestimate
4.3.Thebigunknown
30
30
32
36
X
5
Managingthetransition:Policiestoaddressautomation,augmentationandthegrowingdigitaldivide
5.1Mitigatingthenegativeeffectsofautomation
5.2Ensuringjobqualityunderaugmentation
5.3Addressingthedigitaldivide
38
38
39
40
X
Conclusion
43
Appendix1.CountrieswithmissingISCO-084-digitdata:estimationprocedure45
References47
AcknowledgementsanduseofGPT51
03ILOWorkingPaper96
ListofFigures
Figure1.Meanautomationscoresbyoccupation,basedonISCOandGPTtasks21
Figure2.TaskswithmediumandhighGPT-exposure,byoccupationalcategory(ISCO1-digit)24
Figure3.Boxplotoftask-levelscoresbyISCO4d,groupedbyISCO1d25
Figure4.Augmentationvsautomationpotentialatoccupationallevel27
Figure5.Occupationswithhighautomationpotential28
Figure6.Occupationswithhighaugmentationpotential29
Figure7a.Automationvsaugmentationpotential:sharesoftotalemployment,microdata
for59countries30
Figure7b.Automationvsaugmentationpotential:sharesoftotalemploymentineachsex
(ILOmicrodata)31
Figure8.CountrycoveragebasedonthelevelofdigitsinISCO-08(ILOdata)33
Figure9a.Globalestimates:jobswithaugmentationandautomationpotentialasshareof
totalemployment34
Figure9b.Automationvsaugmentationpotential:sharesoftotalemploymentforeachsex
(globalestimate)35
Figure10.Occupationswithhighautomationpotential,byISCO4-digitandincomegroup36
Figure11a.The“BigUnknown”:occupationsbetweenaugmentationandautomationpotential37
Figure11b.The“BigUnknown”:shareoftotalemployment,byincomegroup(globalestimate)37
Figure11.Shareofpopulationnotusingtheinternet41
Figure12.Aclassicgrowthpath:incomeandoccupationaldiversification42
04ILOWorkingPaper96
ListofTables
Table1.ISCO-08Structureofoccupationsandtasksusedinthestudy11
Table2.SampleoftasksanddefinitionsfromISCOandpredictedbyGPT-414
Table3.Sampleoftask-levelscores(high-incomecountrycontext)15
Table4.aTestofscoreconsistency(100task-levelpredictions)17
Table4.bTaskswithhighautomationpotentialclusteredintothematic22
groups*
Table5.Groupingofoccupationsbasedontask-levelscores26
Table6.MicrodatacoveragebylevelsISCO-08:numberofcountries32
05ILOWorkingPaper96
Acronyms
3G
ThirdGeneration(referringtoagenerationofstandardsformobiletelecom-munications)
Ada
AlanguagemodelbyOpenAIusedtogenerateembeddings
AGI
ArtificialGeneralIntelligence
AI
ArtificialIntelligence
ANN
ArtificialNeuralNetwork
API
ApplicationProgrammingInterface
ATMs
AutomatedTellerMachines
CPU
CentralProcessingUnit
DL
DeepLearning
DOLE
DepartmentofLaborandEmployment
ESCO
EuropeanSkills,Competences,QualificationsandOccupations
GPTs
GenerativePre-TrainedTransformers
GPT-4
GenerativePre-TrainedTransformer4
GPU
GraphicsProcessingUnit
HIC
High-IncomeCountries
ICT
InformationandCommunicationsTechnology
ILO
InternationalLabourOrganization
ISCO
InternationalStandardClassificationofOccupations
ISCO-08
InternationalStandardClassificationofOccupations2008
K-Means
K-MeansClusteringAlgorithm
LFS
LabourForceSurveys
LIC
Low-IncomeCountries
LLMs
LargeLanguageModels
06ILOWorkingPaper96
LMIC
Lower-Middle-IncomeCountries
ML
MachineLearning
NLP
NaturalLanguageProcessing
OECD
OrganisationforEconomicCo-operationandDevelopment
O*NET
OccupationalInformationNetwork
OpenAI
OpenArtificialIntelligence(organization'sname)
Python
High-levelprogramminglanguage
RL
ReinforcementLearning
SD
StandardDeviation
SMEs
SmallandMedium-sizedEnterprises
UMIC
Upper-Middle-IncomeCountries
US
UnitedStates
USD
UnitedStatesDollar
UMIC
Upper-Middle-IncomeCountries
US
UnitedStates
07ILOWorkingPaper96
XIntroduction
Eachnewwaveoftechnologicalprogressintensifiesdebatesonautomationandjobs.CurrentdebatesonArtificialIntelligence(AI)andjobsrecallthoseoftheearly1900swiththeintroduc-tionofthemovingassemblyline,oreventhoseofthe1950sand1960s,whichfollowedtheintro-ductionoftheearlymainframecomputers.Whiletherehavebeensomenodstothealienationthattechnologycanbringbystandardizingandcontrollingworkprocesses,inmostcases,thedebateshavecentredontwoopposingviewpoints:theoptimists,whoviewnewtechnologyasthemeanstorelieveworkersfromthemostarduoustasks,andthepessimists,whoraisealarmabouttheimminentthreattojobsandtheriskofmassunemployment.
Whathaschangedindebatesontechnologyandworkers,however,isthetypesofworkersaf-fected.Whiletheadvancesintechnologyintheearly,midandevenlate-1900swereprimarilyfocusedonmanualworkers,technologicaldevelopmentsincethe2010s,inparticulartherapidprogressofMachineLearning(ML),hascentredontheabilityofcomputerstoperformnon-rou-tine,cognitivetasks,andbyconsequencepotentiallyaffectwhite-collarorknowledgeworkers.Inaddition,thesetechnologicaladvancementshaveoccurredinthecontextofmuchstrong-erinterconnectednessofeconomiesacrosstheglobe,leadingtoapotentiallylargerexposurethanlocation-based,factory-levelapplications.Yetdespitethesedevelopments,toanaverageworker,eveninthemosthighlydevelopedcountries,thepotentialimplicationsofAIhave,untilrecently,remainedlargelyabstract.
ThelaunchofChatGPTmarkedanimportantadvanceinthepublic’sexposuretoAItools.Inthisnewwaveoftechnologicaltransformation,machinelearningmodelshavestartedtoleavethelabsandbegininteractingwiththepublic,demonstratingtheirstrengthsandweaknessesindailyuse.ThechatfunctiondramaticallyshortenedthedistancebetweenAIandtheenduser,simultaneouslyprovidingaplatformforawiderangeofcustom-madeapplicationsandinno-vations.Giventhesesignificantadvancements,itisnotsurprisingthatconcernsoverpotentialjoblosshaveresurged.
WhileitisimpossibletopredicthowgenerativeAIwillfurtherdevelop,thecurrentcapabilitiesandfuturepotentialofthistechnologyarecentraltodiscussionsofitsimpactonjobs.Scepticstendtobelievethatthesemachinesarenothingmorethan“stochasticparrots”–powerfultextsummarizers,incapableof“learning”andproducingoriginalcontent,withlittlefutureforgen-eralpurposeuseandunsustainablecomputingcosts(Benderetal.2021).Ontheotherhand,morerecenttechnicalliteraturefocusedontestingthelimitsofthelatestmodelssuggestsanincreasingcapabilitytocarryout“novelanddifficulttasksthatspanmathematics,coding,vision,medicine,law,psychologyandmore”,andageneralabilitytoproduceresponsesexhibitingsomeformsofearly“reasoning”(Bubecketal.2023).Someassessmentsgoasfarassuggestingthatmachinelearningmodels,especiallythosebasedonlargeneuralnetworksusedbyGenerativePre-trainedTransformers(GPT,seeTextBox1),mighthavethepotentialtoeventuallybecomeageneral-purposetechnology(Goldfarb,Taska,andTeodoridis2023;Eloundouetal.2023).1Thiswouldhavemultipliereffectsontheeconomyandlabourmarkets,asnewproductsandservic-eswouldlikelyspringfromthistechnologicalplatform.
Associalscientists,wearenotinpositiontotakesidesinthesetechnicaldebates.Instead,wefocusonthealreadydemonstratedcapabilitiesofGPT-4,includingcustom-madechatbotswithretrievalofprivatecontent(suchascollectionsdocuments,e-mailsandothermaterial),natu-rallanguageprocessingfunctionsofcontentextraction,preparationofsummaries,automatedcontentgeneration,semantictextsearchesandbroadersemanticanalysisbasedontextem-beddings.LargeLanguageModels(LLMs)canalsobecombinedwithotherMLmodels,suchas
1Thethreemaincharacteristicsofgeneral-purposetechnologiesarepervasiveness,abilitytocontinueimprovingovertime,andabil-itytospawnfurtherinnovation(JovanovicandRousseau,2005).
08ILOWorkingPaper96
speech-to-textandtext-to-speechgeneration,potentiallyexpandingtheirinteractionwithdif-ferenttypesofhumantasks.Finally,thepotentialofinteractingwithlivewebcontentthroughcustomagentsandplugins,aswellasthemultimodal(notexclusivetotext,butalsocapableofreadingandgeneratingimage)characterofGPT-4makesitlikelythatthistypeoftechnologywillexpandintonewareas,therebyincreasingitsimpactonlabour.
Departingfromtheseobservations,thisstudyseekstoaddtheglobalperspectivetothealreadylivelydebateonpossiblechangesthatmayresultinthelabourmarketsasaconsequenceoftherecentadventofgenerativeAI.Westressthefocusofourworkontheconceptsof“exposure”and“potential”,whichdoesnotimplyautomation,butratherlistsoccupationsandassociatedemploymentfiguresforjobsthataremorelikelytobeaffectedbyGPT-4andsimilartechnologiesinthecomingyears.Theobjectiveofthisexerciseisnottoderiveheadlinefigures,butrathertoanalysethedirectionofpossiblechangesinordertofacilitatethedesignofappropriatepolicyresponses,includingthepossibleconsequencesonjobquality.
Theanalysisisbasedon4-digitoccupationalclassificationsandtheircorrespondingtasksintheISCO-08standard.ItusestheGPT-4modeltoestimateoccupationalandtask-levelscoresofex-posuretoGPTtechnologyandsubsequentlylinksthesescorestoofficialILOstatisticstoderiveglobalemploymentestimates.Wealsoapplyembedding-basedtextanalysisandsemanticclus-teringalgorithmstoprovideabetterunderstandingofthetypesoftasksthathaveahighauto-mationpotentialanddiscusshowtheautomatingandaugmentingeffectswillstronglydependonarangeofadditionalfactorsandspecificcountrycontext.
Wediscusstheresultsofthisanalysisinthebroadercontextoflabourmarkettransformations.Weputparticularfocusonthecurrentdisparitiesindigitalaccessacrosscountriesofdifferentincomelevels,thepotentialforthisnewwaveoftechnologicaltransformationtoaggravatesuchdisparities,andtheensuingconsequencesonproductivityandincome.Wealsogiveconsider-ationtojobswithhighestautomationandaugmentationpotentialanddiscussgender-specificdifferences.Theanalysisdoesnottakeintoaccountthenewjobsthatwillbecreatedtoaccom-panythetechnologicaladvancement.Twentyyearsago,therewerenosocialmediamanagers,thirtyyearsagotherewerefewwebdesigners,andnoamountofdatamodellingwouldhaverenderedaprioripredictionsconcerningavastarrayofotheroccupationsthathaveemergedinthepastdecades.AsdemonstratedbyAutoretal.(2022),some60percentofemploymentin2018intheUnitedStateswasinjobsthatdidnotexistinthe1940s.
Indeed,themainvalueofstudiessuchasthisoneisnotinthepreciseestimates,butratherinunderstandingthepossibledirectionofchange.Suchinsightsarenecessaryforproactivelyde-signingpoliciesthatcansupportorderly,fair,andconsultativetransitions,ratherthandealingwithchangeinareactivemanner.Forthisreason,wealsoemphasizethepotentialeffectsoftechnologicalchangeonworkingconditionsandjobqualityandtheneedforworkplaceconsul-tationandregulationtosupportthecreationofqualityemploymentandtomanagetransitionsinthelabourmarket.
Wehopethatthisresearchwillcontributetoneededpolicydebatesondigitaltransformationintheworldofwork.Whiletheanalysisoutlinespotentialimplicationsfordifferentoccupationalcategories,theoutcomesofthetechnologicaltransitionarenotpre-determined.Itishumansthatarebehindthedecisiontoincorporatesuchtechnologiesanditishumansthatneedtoguidethetransitionprocess.Itisourhopethatthisinformationcansupportthedevelopmentofpoliciesneededtomanagethesechangesforthebenefitofcurrentandfuturesocieties.Weintendtousethisbroadglobalstudyasanopeningtomorein-depthanalysesatcountrylevel,withaparticularfocusondevelopingcountries.
09ILOWorkingPaper96
XTextBox1:WhatareGPTs?
GenerativePre-TrainedTransformersbelongtothefamilyofLargeLanguageModels–atypeofMachineLearningmod-elbasedonneuralnetworks.The“generative”partreferstotheirabilitytoproduceoutputofacreativenature,whichinlanguagemodelscantaketheformofsentences,paragraphs,orentiretextstructures,withcharacteristicsoftenun-distinguishablefromthatproducedbyhumans.“Pre-trained”referstotheinitialtrainingonalargecorpusoftextdata,typicallythroughunsupervisedorself-supervisedlearning,duringwhichthemodellearnsaboutthetextstructurebytemporarilymaskingpartofthecontentandtryingtominimizeerrorsinthepredictionofthemaskedwords.Followingpre-training,suchmodelsarefurtherfine-tunedwiththeuseoflabelleddataandso-called“reinforcementlearning”,makingthemmoresuitableforspecifictasks.Thispartoftrainingisoftenperceivedasaspecializedjob,executedbyahandfuloftechnicalexperts.Inreality,itislabourintensiveandinvolvesmanyinvisiblecontributors(Dzieza2023).Itsprerequisiteistheproductionofvastamountsoflabelleddata,typicallydonebyworkersoncrowdsourcingplatforms.“Transformers”refertotheunderlyingmodelarchitecture,whichusesnumerousmechanisms,suchasattentionandself-attentionframeworks,todevelopweightsrelatedtotheimportanceoftextelements,suchaswordsinasentence,whicharesubsequentlyusedforpredictions(Vaswanietal.2017).
WhileGPTspecificallyreferstomodelsdevelopedbyOpenAI(GPT-1,2,3and4),thistypeofarchitectureisusedbymanymorelanguagemodelsalreadyavailablecommercially.ThelaunchofChatGPTon30November2022madeGPTsmorepopularamongthepublic,asitmadeitpossibleforindividualswithnoprogrammingknowledgetointeractwithGPT-3(andeventuallyGPT-4)throughachatbotfunctionwithahuman-liketone.Forresearchpurposesandmorecom-plexapplications,suchlanguagemodelsaretypicallymorepowerfulwhenusedthroughanApplicationProgrammingInterface(API).AnAPIisadeveloperaccesspointthatreliesonaquery-responseprotocolwiththeuseofprogrammingsoftware.Inourcase,werelyonaPythonscriptbasedonOpenAIlibrary,designedtoconnecttoGPT-4model,provideafine-tunedpromptandreceivearesponse,whichissubsequentlystoredinadatabaseonourserver.ThisenablesbulkprocessingoflargenumbersofrequestsandreliesontheGPT-4modelwithmoreparametersthanwhatisaccessiblethroughthepublicChatfunction.
10ILOWorkingPaper96
X1MethodsandData
Therearetwoprincipalapproachestotheanalysisofautomationofoccupations(GeorgieffandHyee2021).Thefirstistousedataonjobvacanciestounderstandhowdemandforspecificskillsevolvesovertime.Moststudiesusingthisapproachharnessdatafromonlinerecruitmentplat-forms(CammeraatandSquicciarini2021;Acemogluetal.2022)tomeasurethefrequencyofref-erencestoAI(ortoanyothertechnologyofinterest)inthetextofthejobdescription.Theseref-erencesarethenusedasaproxyforthedemandforspecificskillsand,byitsextension,aproxyfortherateoftechnologicaladoptionattheenterpriselevel.Thisapproachworkswellincoun-trieswithahighonlinepresenceinrecruitment,thoughitdoesnotalwayscapturetheindus-triesaffectedasaresultofsubcontracting.Theapproach,however,islesswellsuitedforaglobalstudycoveringcountrieswithlessonlinepresence,asmostvacanciesarenotadvertisedonon-lineplatformsbutrecruitedthroughothermeansofcommunication(GeorgieffandHyee2021).
Thesecondapproachistofocusonoccupationalstructures,withtheideaofestimatingtheau-tomationpotentialoftasksorskillsthatmakeupagivenjob.Theadvantageofthismethodisthatsuchoccupationalclassificationscaneasilybelinkedtoofficiallabourmarketstatistics,whichisofparticularimportanceforunderstandingglobal,regionalandincome-baseddiffer-entials.Thisstrandofliteratureisrich,butfrequentlymisunderstood,especiallywhenitcomestocommunicatingitsfindingstothepublic,asmediainterpretationstendtoblurthedistinc-tionbetweenautomationpotentialandactualdeploymentintheworkplace.Forexample,FreyandOsborne’s(2013,2017)influentialstudyhasbeencitedover12,000times,oftenfordiffer-enttypesofdoomsdaypronouncements,eventhoughtheauthorswereclearaboutthedistinc-tionbetweenpotentialandpredictedeffects.Arangeofstudiesfollowthisresearchtradition,attemptingtocalculatedifferenttypesofoccupationalautomationscoresinOECDcountries(Brynjolfsson,Mitchell,andRock2018;Felten,Raj,andSeamans2018;Felten,Raj,andSeamans2019;AcemogluandRestrepo2020;FossenandSorgner2022)orevencombiningoccupationalandjobpostingdata(GeorgieffandHyee2021).Someauthorshavealsotakenupthechallengeofproducingbetterestimatesfordevelopingcountries(BalliesterandElsheikhi2018),oftenbytryingtolinkdetailedoccupationaldataand
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 培训班述职报告
- 西京学院《包装设计》2021-2022学年第一学期期末试卷
- 西华大学《计算机视觉与模式识别》2022-2023学年第一学期期末试卷
- 西昌学院《外国文学》2023-2024学年第一学期期末试卷
- 西安邮电大学《原子物理》2021-2022学年第一学期期末试卷
- 对口升学语文模拟试卷(5)-江西省(原卷版)
- 青海省西宁市2021-2022学年八年级上学期期末历史试题(解析版)
- 汽车维修店员工工服管理规定
- 大连理工大学生物化学课件-蛋白质合成与转运
- 中国钙钛矿太阳能电池技术行业市场现状分析及发展趋向研判报告
- 国家开放大学《心理学》形考任务1-4参考答案
- 2024年新疆铁道职业技术学院单招职业技能测试题库各版本
- 市场调研分析总结与反思
- 启航计划培训总结与反思
- MOOC 人体生理与健康-河南大学 中国大学慕课答案
- 工商企业管理毕业论文范文(十九篇)
- 《肾内科品管圈》
- 人力资源管理-基于创新创业视角智慧树知到期末考试答案2024年
- 空气预热器市场前景调研数据分析报告
- 2024版食源性疾病培训完整
- 2024年甘肃省公务员公共基础知识重点考试题库(含答案)
评论
0/150
提交评论