导数中的二次求导问题_第1页
导数中的二次求导问题_第2页
导数中的二次求导问题_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

导数中的二次求导问题【知识要点】高中数学课程标准对导数的应用提出了明确的要求。导数在研究函数中的应用,是高考考查的重点、难点和必考点。利用导数求解函数的单调性、极值和最值等问题是高考考查导数问题的主要内容和形式,并多以压轴题的形式出现。考查运算求解能力、概括抽象能力、推理论证能力和函数与方程、化归与转化思想、分类与整合思想、特殊与一般思想的渗透和综合运用,难度较大。在解决有关导数应用的试题时,有些题目利用“一次求导”就可以解决,但是有些问题“一次求导”不能求出原函数的单调性,还不能解决问题,需要利用“二次求导”才能找到导数的正负,找到原函数的单调性,才能解决问题。“再构造,再求导”是破解函数综合问题的有效工具,为高中数学教学提供了数学建模的新思路和“用数学”的新意识和新途径。【方法讲评】方法二次求导对函数一次求导得到之后,解不等式难度较大甚至根本解不出。设,再求的单调性,得到函数到函数的单调性。【例1】(理·2010全国卷Ⅰ第20题)已知函数(Ⅰ)若,求的取值范围;(Ⅱ)证明:化简得,所以两边同乘可得,所以有,在对求导有,即当<<时,;当<时,所以。在<,>,在区间上为增函数;当时,在区间上为减函数。又因为,所以时有最大值,即当时,同理,当,此时。综上,得证。方法二:(Ⅰ),则。当<<时,。综上,的取值范围是等价于;当。令时,,则是。的最大值点,所以。【点评】(1)比较上述两种解法,可以发现用二次求导的方法解题过程简便易懂,思路来得自然流畅,难度降低,否则,另外一种解法在解第二问时用到第一问的结论,而且运用了一些代数变形的技巧,解法显得偏而怪,同学们不易想出。(2)大家一定要理解二次求导的使用情景,是一次求导得到二次求导之后,设数的单调性,得到函数之后,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论