初中年级数学教学设计:完全平方公式3篇_第1页
初中年级数学教学设计:完全平方公式3篇_第2页
初中年级数学教学设计:完全平方公式3篇_第3页
初中年级数学教学设计:完全平方公式3篇_第4页
初中年级数学教学设计:完全平方公式3篇_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页初中年级数学教学设计:完全平方公式优秀3篇在平日的学习、工作和生活里,大家都跟课文打过交道吧,下面是我辛苦为朋友们带来的3篇《初中年级数学教学设计:完全平方公式》,希望能为您的思路提供一些参考。

《完全平方公式》教案篇一

运用乘法公式计算:

(l)(2)

(3)(4)

学生活动:采取比赛的方式把学生分成四组,每组完成一题,看哪一组完成得快而且准确,每组各派一个学生板演本组题目.

【教法说明】这样做的目的是训练学生的。快速反应能力及综合运用知识的能力,同时也激发学生的学习兴趣,活跃课堂气氛.

(四)总结、扩展

这节课我们学习了乘法公式中的完全平方公式.

引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.

八、布置作业

《完全平方公式与平方差公式》教学设计篇二

课题:第十章二元一次方程组课时分配本课(章节)需1课时

本节课为:第1课时

为本学期:总第课时

练习课

目标:

1、这一章的学习,使学生掌握二元一次方程组的解法。

2、学会解决实际问题,分析问题能力有所提高。

重点:这一章的知识点,数学方法思想。

难点:实际应用问题中的等量关系。

方法讲练结合、探索交流课型新授课教具投影仪

全章小结

四人一小组,互相交流学习这一章的感觉,主要学习了哪些知识。还有不懂的方面?感到困难的部分是什么?

方案一基本练习题

1、下列各组x,y的值是不是二元一次方程组的解?

(1)(2)(3)

2、根据下表中所给的x值以及x与y的关系式,求出相应的y值,然后填入表内:

x12345678910

Y=4x

Y=10-x

根据上表找出二元一次方程组的的解。

3、已知二元一次方程组的解

求a,b的值。

4、解二元一次方程

(1)(2)

方案〈二〉

1、根据已知条件,求出y的值,分别填入下列各图中,并找出方程组的解。

2、写出一个二元一次方程,使得都是它的解,并且求出x=3时的方程的解。

3、已知三角形的周长是18cm,其中两边的和等于第三边的2倍,而这两边的差等与第三边的,求这个三角形的各边长。

设三边的长分别是xcm,ycm,zcm

那么你会解这个方程组吗?

方案〈三〉

1、有甲、乙两种铜银合金,甲种含银25%,乙种含银37.5%,现在要熔成含银30%的合金100千克,这两种合金各取多少千克?

2、甲、乙两地.之间路程为20km,A,B两人同时相对而行,2小时后相遇,相遇后A就返回甲地,B仍向甲地前进,A回到甲地时,B离甲地还有2km,求A,B两人速度。

3、小亮在匀速行驶的汽车里,注意到公路里程碑上的数是两位数;1h后看到里程碑上的数与第一次看到的两位数恰好颠倒了数字顺序;再过1h后,第三次看到的里程碑上的数字又恰好是第一次见到的数字的两位数的数字之间添加一个0的三位数,这3块里程碑上的数各是多少?

教学素材:

A组题:

1、已知x+y+(x-y+3)2=0,求x,y的值。

2、若3m-2n-7=0,则6n-9m-6是多少?

3、解方程组

(1)

(2)

4、用白铁皮做盒子,每张铁皮可生产12个盒身或18个盒盖,现有49张铁皮,怎样安排生产盒身和盒盖的铁皮张数,才使生产的盒身与盒盖配套(一张铁皮只能生产一种产品,一个盒身配两个盒盖)?

5、给定两数5与3,编一道通过列出二元一次方程组来求解的应用题,并使得这个方程的解就是这两个数。

B组题:

1、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售,每吨可获取利润500元,制成酸奶销售,每吨可获利润1200元,制成奶片销售,每吨可获利润2000元,该工厂的生产能力为:如制成酸奶,每天可加工3吨,制成奶片每天可加工1吨,受人员限制,两种加工方式不能同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕,为此,该加工厂设计了两种可行性方案:

方案一:尽可能多的制成奶片,其余直接销售鲜牛奶。

方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成。

你认为选择哪种方案获利最多,为什么。

2、在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为,

(1)甲把a看成了什么,乙把b看成了什么

(2)求出原方程组的正确解。

学生充分发表意见再根据学生的意见采用方法。

学生板演

作业P103910

P1241314

板书设计

方案一方案二方案三

数学《完全平方公式》教案篇三

重点、难点根据公式的特征及问题的特征选择适当的公式计算。

教学过程

一、议一议

1、边长为(a+b)的正方形面积是多少?

2、边长分别为a、b拍的两个正方形面积和是多少?

3、你能比较(1)(2)的结果吗?说明你的理由。师生共同讨论:学生回答(1)(a+b)(2)a+b(3)因为(a+b)=a+2ab+b,所以(a+b)-(a+b)=a+2ab+b-a-b=2ab,即(1)中的正方形面积比(2)中的正方形面积大。

二、做一做

例1.利用完全平方式计算1.102。

2、197师:要利用完全平方公式计算,则要创设符合公式特征的两数和或两数差的平方,且计算尽可能简便。学生活动:在练习本上演示此题。让学生叙述

教师板书。解:1.102=(100+2)2.197=(200-3)=100+2lOO2+2,=200-22O03十3,=10000+400+4=40000-1200+9=10404=38809例2.计算:1.(x-3)-x

2、(2a+b-)(2a-b+)师生共同分析:1中(x-3)可利用完全平方公式。学生动笔解答第1题。教师根据学生解答情况,板书如下:解:1.(x-3)-x=x+6x+9-x=6x+9师问:此题还有其他方法解吗?引导学生逆用平方差公式,从而培养学生创新精神。学生活动:分小组讨论第(2)题的解法。此题学生解答,难度较大。教师要引导学生使用加法结合律,为使用公式创造条件。学生小组交流派代表进行全班交流。最后教师板书解题过程。解:2.(2a+b-)(2a-b+)=[2a+(b-)][2a-(b-)]=(2a)-(b-)=4a-(b-3b+)=4a-b+3b-

三、试一试

计算:

1、(a+b+c)

2、(a+b)师生共同分析:对于1要把多项式完全平方转化为二项式的完全平方,要使用加法结合律,为使用完全平方公式创造条件。如(a+b+c)=[a+(b+c)]对于(2)可化为(a+b)=(a+b)(a+b)。学生动笔:在练习本上解答,并与同伴交流你的做法。学生叙述。

教师板书。解:1.(a+b+c)=[a+(b+c)]=(a+b)+2(a+b)c+c=a+2ab+b+2ac+2bc+c=a+b+c+2ab+2ac+2bc

四、随堂练习

P381

五、小结

本节课进一步学习了完全平方公式,在应用此公式运算时注意以下几点。1.使用完全平方公式首先要熟记公式和公式的特征,不能出现(ab)=ab的错误,或(ab)=aab+b(漏掉2倍)等错误。2.要能根据公式的特征及题目的特征灵活选择适当的公式计算。3.用加法结合律,可为使用公式创造了条件。利用了这种方法,可以把多项式的完全平方转化为二项式的完全平方。

六、作业

课本习题1.14P381、2、3.

七、教后反思

1.9整式的除法第一课时单项式除以单项式教学目标1.经历探索单项式除法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论