分析成果介绍_第1页
分析成果介绍_第2页
分析成果介绍_第3页
分析成果介绍_第4页
分析成果介绍_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ANew DenoisingMethodusingTextureMetrican ptiveStructureVarianceYiweiZhang1,GeLi∗2,XiaoqiangGuo3,WenminWang4,RonggangWangSchoolofElectronicandComputerEngineering,PekingUniversityShenzhenGraduateSchoolLishuiRoad2199,NanshanDistrict,Shenzhen,GuangdongProv 1 4 5AcademyofBroadcastingScience,FuxingmenOuterStreet2,XichengDistrict, ,3—Inthispaper,aninnovatedmethodisproposedfordenoising.ThemethodconsistsoftwomajorFirst,anewadaptivesuperpixel texturemetricisproposed. texturemetriciscalculated,whichrelatestodifferentpartsofa stream.Thenanewadaptivestructurevarianceisestimatedbyadoptingfineandcoarsestructures.Finally,anoisefilterbasedontheestimatedweightsofdifferentstructuresina streamisapplied.Bycomparison,theproposedmethodoutperformstraditionalstate-of-artmethods,especiallyinblockartifactsreduction.IndexTerms— denoising,preprocessing,texturemetric,structurevariance,superpixelI.Denoisingtechniqueisawellexploredtopicinthefieldofimageand pre-processing.Itistheactualfoundationforaplentyofapplications,suchasobjectdetection,behavior codecandcomputervision,etc.Overthepastfewdecades,theperformanceofimagedenoisinghasbeenefficientlyimprovedbyemployingamuchmoreelaboratemodelofnaturalimages.Bynow,manygooddenoisingalgo-rithms[1],[2],[3],[4],[5],[6]havebeenproposed,and[7]presentsacomprehensivecomparisonofthem.Eventhough,theoriginalpurposeofdenoisingistoremoveunexpectednoisefromacorruptedimageand .Howevertheartifactscausedbythesealgorithmshavepostedasevereeffectonthequalityofimageand .Thusagooddenoisingmethodshouldintroduceasfewartifactsaspossible.SofarBM3D[4]andBM4D[5]aretwoofthestate-of-artmethodsforimageand denoising.Grousimilar2-Dblockstoa3-DgroupandperformingtransformationarethemajorcontributioninBM3D.Themethodadoptsacollaborativefiltertoperformimagereconstruction,whichretainsbetterdetails.DerivingfromBM3D,BM4Dgroupssimilar3-Dspatiotemporalvolumestoa4-Dgroup.ThosetwomethodsThisprojectwassupportedbyShenzhenPeacockn ),ScienceandTechnologynningProjectofGuangdongProve,(No.2014B )and863projectunderGrant(No.2015AA015905).

performswellinthenoisereduction.However,blockartifactsintroducedbyBM3DandBM4Darestillneedtobeimproved,asshowninFig.1(b).Inthispaper,aninnovatedmethodisproposedwhichcanreducenoisewell,andintheme showslessblockingartifacts.Fig.1.(a)thefirstframeofCrowded3.(b)denoisingresultsofBM4D.(c)denoisingresultsofourmethod.Toachievebetterdenoisingperformance,theapproachiscomposedoftwostages:obtainmentofadaptivesuperpixeltexturemetric;combinationoffineandcoarsestructure.First,weutilizesuperpixelandSingleValue position(SVD)toobtainatexturemetricρforeachpathofeachframe.Bygrouallofpathmetricρ,weobtainabrandnewtexturemetricP.Andalso,Pisutilizedtoestimateproportionoffinestructureandcoarsestructureinthestream.Second,anewadaptivestructurevarianceisobtainedbyadoptingfineandcoarsestructurebasedonP,whichcanbefitwellfordifferentscenarios.Finally,thestreamisobtainedbyapplyinganoisefilterbasedontheestimatedweightsofdifferentstructures.Contribution:twomajorproceduresareproposedinthispaper.First,aninnovateptive texturemetricbasedonsuperpixelisintroduced,whichisrelatedtodifferentpartsofa stream.Second,anewadaptivestructurevarianceisobtainedbyutilizingfineandcoarsestructurestoperformfiltering.Bycomparison,ourproposedmethodoutperformstraditionalstate-of-artmethods,especiallyinblockartifactreduction,asshowninFig.1(c).Theremainderofthispaperisorganizedasfollows.givesthedetailsofourmethod.SectionIgivestheexperimentalresultsofourapproachandcomparisonswithtwostate-of-artalgorithms.Finally,thepaperisconcludedinsectionIV.978-1-5090-5316-2/16/$31.00c2016 VCIP2016,Nov.27–30,2016,.TheProposedTheaimoftheproposedmethodinthispaperistoremovenoisefromcontaminated ,retainmuchmoretexturedetailsandproducefewerblockingartifacts.Inmanyliter-atures,aplentyofnoisemodelsareappliedin orimageprocessing.Inthisstudy,weadoptanadditivewhiteGaussiannoise(AWGN)model.Consideranobserved streamasanoisedimagesequencez:X×Tdefinedasz(x,t)=y(x,t)+η(x,t),x∈X,t∈T wherey(·,·)isamatrixrepresentingtheoriginal(unknown)

AndtheflagindexofeachsuperpixelpathisdefinedF,k=k,k∈Li where,krepresentsthek-thsuperpixelpathof.LabelofSuperpixelGradientPath:HereweGi,k,handGi,k,vasthehorizontalandverticalgradients,krespectively,showninequationGi,k,h,Gi,k,v=Gi,h(x,y),Gi,v(x,y),(x,y)∈XwhereX,kdenotesthesetofcoordinatesof,k.ThenthegradientGi,kof,kisobtainedbyjointingGi,k,hand,η(·,·)∼N(0,σ2) .d.AWGN.And(x,t) the3-Dspatiotemporalcoordinateingrayspaceorthe4-D Gi,k= Gi,k,h(m)Gi,k,v(m) ,m∈{1,...,ωi,k} spatiotemporalcoordinateolorspace.Forsimplicity,onlyinthegrayspaceisstudied,thusX⊂Z2,T⊂Z. obtainy(·,·),weproposeamethoddesigned whereωi,krepresentsthescalesizeof,k.Gi,kisaωi,k-2matrix.Gi,k,h(m),Gi,k,v(m)denotesthegradientsofy(x,t)=P.∗yf(x,t)+(1−P).∗yc(x, wherePisatexturemetricmatrixcontainin erallcharac-tersofsuperpixelsfor stream,derivedinsection-

atthecoordinate(xm,AdaptiveSuperpixelSVD:Wedefineacorrelativeco-variancematrixCasyf(·,·)andyc(·,)·areoutputsofnoisefilterswithsucturevarianceσ2andσ2respectively,asshowninsection-B.

CC=

Forsimplicity,weuseGtoreceGi,k.AfterSVDofG, TextureMetricBasedon denoisingfiltering,sometexturedetailsmaybesmooth-filteredcausingunwantedartifacts.To thisdefect,wefirstadoptthemetricPtoestimatetexture.Inspiredby[8],Piscalculatedby

isrepresented

G=U 0

CalculationofOrientationGradient:Whengradientsofneighboursareisotropic,therelativetextureissmooth;when

U ,V= gradientsareanisotropic,thetextureispoignant.Sowe ωi,kgradientoperatorSober(3)and(4)asthebasicoperatorsfortextureestimation.00010000001000000100021

whereUandVarebothorthonormalmatrix,definedinequation(12).s1ands2arethepr ipaleigenvalueofmatrixG.Combining(11)and(12),weobtaDh=

,Dv=

C v2s2+ v11v21(s2− 111

However,Ginpracticeisinterferedbynoise,thusweDh=8−202,Dv=

ˆtorepresenttherealgradientofsuperpixelpathandCˆ−10

representthecorrelativecovariance.Asaresult,equationwhereDhandDvarehorizontalandverticalSoberfilterrespectively.Forthei-thframe ina ,weobtainits

and(13)aremodifiedas(14)andˆ=ˆsˆ10Vˆ gradientGi,h,Gi,v= , ,1≤i≤

2sˆ2+

C

whereGi,handGi,varehorizontalandverticalgradientsofrespectively,Nfisthenumberof SuperpixelSegmentation:Thereexistsmanyalgorithmstosegmentanimage.Inthispaper,weuse[9]tosplittheframesintomanypaths.FortheframeI,

21 11Herewesetthegradientofsuperpixel-noisepathˆ=G+ Cˆ=GTG+GTGη+GTG+GT divideitintoNipaths.Thenweobtainsuperpixellabelof,definedas

eCisunknown,soweuseE(ˆ)toestimateE(C)Li={1,..., (ˆ)AssumingnoiseisAWGN,GandGηsatisfytheformulaE(GTGη)=E(GTG)

ηE(GT

2

whereξ=1/2whenusingoperator(3),ξ=3/16whenusingoperator(4).Thus,therelationshipbetweenoriginalandrealisticsinglevalueisobtainedas(

√√

α=v11v21,β

v2+

Fig.2.Expectedvalueof 21,γ=

vˆ2+vˆ Inspiredby[10],[11],we

+

Thusweobtaintheexpectedvalueofρi,k describedinequation(27).Fig.2givesthemoreintuitionaldescription

ρ= −sˆ12+tocharacterizethenoise-textureofthesuperpixelpath. E(ρi,k)

isan

α,β,γ,ξ,ωi,kareconstantsinafixedpathrespectively,the (ωi,k−1)!!·π

isanonlychangeswiths1,s2andσ2.Now,supposeσ2isconstant,ρwillbelargerwhenthereisaprominenttexture(s1 inthepath.Asaresult,wedefines2−

ThenwesetathresholdτequaltoE(ρi,k),andmark,kasfinestructurepathifρi,k>τandcoarsestructurepathifρi,k<τ.Finally,variancesofall,karecalculated, ρ=s12+ arelabeledas correspondingtofinestructureand correspondingtocoarseasatexturemetricforthesuperpixeObtainmentOfTextureMetric:Considering

2)FilteringwithWeights:First,finestructurevariancefcandcoarsestructurevarianceσ2ofstreamarefcvaryingwithsuperpixelpaths,weuseρi,ktodenotethetexturemetricof,k.Formoreexplicitly,weintroducesuperpixel

respectively

σ2=wf∗ texturemetricpathˆ,kcorrespondingto,k,defined

i∈Nf cσ2=w∗ c

ˆ,k={(x,y)|V(x,y)=ρi,k,(x,y)∈

whereV(x,y)denotesthevalueof atcoordinate(x, wherewfandwcareutilizedtoadjustσ2andσ2,of ThenPisobtainedbyaggregatingallˆ,k,described thegeneralformulawisdescribed1P={

,k∈

w1+

Combinationof

∆=min{mean(σ2−

Inordertoreconstructthestreamwithgood i∈Nf performanceandlessblockartifacts,weadoptanewadaptivestructurevariance.Thisvarianceisestimatedbyadoptingfineandcoarsestructures.Thenanoisefilterbasedontheestimatedweightsofdifferentstructureisapplied.Thedetailsaredescribedby

a,bandcareconstants.Thenthefinestructurestreamyf(·,·)andthecoarsestructurestreamyc(·,·)areobtainedrespectivelyas(yf(x,t)=Filter{z(x,t),ObtainingStructureVariance:First,Weusethecalcu-latedρi,kasateststatistictodecidewhetherasuperpixel

cyc(x,t)=Filter{z(x,t),c

pathhasastrongertexture.Byintroducingeigenvaluesandconditionnumbersofrandommetrics[12],weobtained

whereFilter{z(x,t),σ2}andFilter{z(x,t),σ2} theprocessoffilteringwithσ2andσ2forz(·,· possibilitydensityfp(ρi,k)ofρi,k,described weobserveρi,kcanestimatetheprobabilityofstructures.ThusweutilizePasaweightforfiltering.fp(ρi,k)=(ωi,k−1)ρi,k(1−ρ2 thereconstructedstreamisobtainedbyequationTABLEIComparisonOfPSNRσFig.3.Denoisingresults

streamnamedStandard2.(a)isthefirst

IV.Inthispaper,wepresentaninnovativedenoisingmethodcombininganewadaptivetexturemetricbasedonsuperpixelandanewstructurevariance.Byutilizingthe metrictoweightthefineandcoarse stream,majorartifactsproducedbytraditionalmethodsareeliminateddra-matically.Experimentresultsshowthattheproposedmethodcanachievterperformancecomparedwithtwostate-of-artframeofthe.(b)to(d)respectivelydenotesthefilteringresultsofdifferentalgorithmsasBM3D,BM4D,andours.I.ExperimentSimulationresultsaregivenincomparisonofBM3DandBM4D.Allthemethodsaretestedandcomparedwith40 streamundervariousnoiselevelsand13 stream1.SectionI-AandsectionI-Baresubjectiveandobjectiveassessmentrespectively.ThemajorparametersoftheproposedmethodaresetasTABLE.MajorParametersOfTheProposedδcababSubjectiveAsshowninFig.3(b-c),ourmethodcanadaptivelyadjusttheproportionbetweenfinestructureandcoarsestructuretoretaindetailedtextureandreduceblockartifactsontheprocess denoising.AsshowninFig.3(d),ourmethodretainsasmuchdetailedtextureasBM4DandproducesfewerblockartifactsthanBM4D.ObjectiveTheperformancecomparisonisshowninTABLE1

H.TalebiandP.Milanfar,“Globalimagedenoising,”ImageProcessing,IEEETransactionson,vol.23,no.2,pp.755–768,2014.W.Dong,G.Li,G.Shi,X.Li,andY.Ma,“Low-ranktensorapprox-imationwithlacianscalemixturemodelingformultiframeimagedenoising,”inProceedingsoftheIEEEInternationalConferenceonComputerVision,2015,pp.442–449.H.Yue,X.Sun,J.Yang,andF.Wu,“Imagedenoisingbyexploringexternalandinternalcorrelations,”ImageProcessing,IEEETransactionson,vol.24,no.6,pp.1967–1982,2015.K.Dabov,A.Foi,andK.Egiazarian,“denoisingbysparse3dtransform-collaborativefiltering,”inSignalProcessingConfer-ence,200715thEuropean.IEEE,2007,pp.145–149.M.Maggioni,G.Boracchi,A.Foi,andK.Egiazarian,“denoising,deblocking,andenhancementthroughseparable4-dnonlocalspatiotem-poraltransforms,”ImageProcessing,IEEETransactionson,vol.21,no.9,pp.3952–3966,2012.Z.Liu,L.Yuan,X.Tang,M.Uyttendaele,andJ.Sun,“Fastburstimagesdenoising,”ACMTransactionsonGraphics(TOG),vol.33,no.6,p.232,L.Shao,R.Yan,X.Li,andY.Liu,“Fromheuristicoptimizationtodictionarylearning:areviewandcomprehensivecomparisonofimagedenoisingalgorithms,”Cybeics,IEEETransactionson,vol.44,no.7,pp.1001–1013,2014.L.Ding,G.Li,R.Wang,andW.Wang,“pre-processingwithjnd-basedgaussianfilteringofsuperpixels,”inIS&T/SPIEElectronicImaging.InternationalSocietyforOpticsandPhotonics,2015,pp.941004–941004.R.Achanta,A.Shaji,K.Smith,A.Lucchi,P.Fua,andS.Susstrunk,“Slicsuperpixelscomparedtostate-of-the-artsuperpixelmethods,”Pat-ternysisandMachineInligence,IEEETransactionson,vol.34,no.11,pp.2274–2282,2012.L.Li,R.Wang,W.Wang,andW.Gao,“Alow-lightimageenhancementmethodforbothdenoisingandcontrastenlarging,”inImageProcessing(ICIP),2015IEEEInternationalConferenceon.IEEE,2015,pp.3730–X.ZhuandP.Milanfar,“Automaticparameterselectionfordenoisingalgorithmsusingano-referencemeasureofimagecontent,”ImageProcessing,IEEETransactionson,vol.19,no.12,pp.3116–3132,2010.A.Edelman,“Eigenvaluesandconditionnumbersofrandommatrices,”SIAMJournalonMatrixysisandApplications,vol.9,no.4,pp.543–560,1988.一种基于纹理度量和自适应结构方差的视频去噪方法1,.2,郭3,,1. 4 中国广播电视研究院,中国北京市西城区复兴门外大街2号中国,1008663guoxi 入尽可能少的伪影。到目前为止BM3D4]BM4D5]2-D3-DBM3D,将类似的3-D时空体积分组为4-D组。这两种方法该项目得到了深圳市孔雀计划 1.(a)Crowded3bBM4D(c)构的结合。首先,我们利用超像素和单值分解(SVD)ρ。通过对1(c)所示。及与两种最先进算法的比较。最后,第四节对本文进行了总结。978-1-5090-5316-2/16/$31.00c2016IEEEVCIP2016,2016112730声模型被应用于视频或图像处理。在本研究中,我们采用加性白噪声(AWGN)模型。zXTz(x,ty(x,t)+η(x,t),xX,∈Ty(·,·)(未知)视频的矩阵,η(·,·~N(0,σ2)AWGN间中的视频,因此XZ2,TZ.为了获得y(·,·),我们提出了一种设计为y(x,t)=P的方法。yf(x,t)+(1.P)。。yc(x,t)(2)其中P是包含视频流超像素整体特征的纹理度量矩阵,在第-A节中导出;yf(·,·)和yc(·,·)分别是结构方差为σ2和σ2的噪声滤波器的输出,如第-B节所示。而导致不需要的伪影。为了克服这个缺陷,我们首先采用度量P来估计视频纹理。受[8]的启发 的计算公式如下:令人心酸的。因此我们采用梯度算子Sober(3)和(4)作为纹理估计的基本算子。01.Dh=.1200000011.,Dv=.0200.10100.011.Dh.28.10001.112.,Dv0811.202.10(4)其中Dh和Dv分别是水平和垂直Sober滤波器。对于视频中的第i帧,我们获得其梯度Gi,h,Gi,v=Dh,Dv,1≤i≤Nf其中Gi,h和Gi,v分别是的水平和垂直梯度,Nf是视频帧数9]将帧分割成许多路径。对于帧,我们将其分为Ni条路径。然后我们得到的超像素标Li1,...,Ni}F,k其中,k表示的第k个超像素路径Gi,k,h,Gi,k,v=Gi,h(x,y),Gi,v(x,y),(x,y)∈XGi,kGi,k,h(m)Gi,k,v(m,m1,...,ωi,k}其中ωi,k表示,k的尺度大小。Gi,k是ωi,k4)SVDCCGi,kTGi,kG=UVT(11)0秒2U=un,1un,2,V=v21UV(12)s1s2G(112222v1v111s21s2v11v21(s2)C=(13)22v11v21(s1s2)v1v21秒11秒2s.1V.TG=U02222v.11s.1+v.21s.2v.11v.21(.s1.s.2)C.=(15)22v.11v.21(.s1.s.2)v.21s.1+v.11G.=G+Gη(16)C.=GTG+GTGη+GηTG+GTηGηCE(C.)E(C):E(C)E(C.)E(GTGGTGηGTη+GηTGη)E(GTxiωi,kσ20其中,当使用算子(3)时,Ψ1/2;当使用算子(4)时,Ψ3/16。因此,原始单值与实际单值22s.1.s.2=α(s1.s2)22s.1s.2β(s1s2)+Σγωi,kσ2v11v21v11+v212α=,β=,γ=(21)2222v.11v.21v.11+v.21v.11+ρ=(22)第12条+第22条α、β、γ、xi、ωi、k,ρs1、s2σ2σ2(s1s2)ρ22s1sρ=s1+量。更明确地说,我们引入超像素纹理度量路径,k。对应于,k,定义为,k.={(x,y)|V(x,y)=ρi,k,(x,y)∈Xi,k}(24)其中V(x,y)表示,k的值。在坐标(x,y)处。然后通过聚合所有,k获得P。,描述为={,k。|iÎNf,kÎLi}强的纹理。通过引入随机度量的特征值和条件数[12],我们得到了ρi,k的可能性密度fp(ρi,k),描述为fp(ρi,k)=(ωi,k.1)ρi,k(1.ρi,k2)(ωi,k.2)/3(26)2ρi,k(27)ρi,k2E(ρi,k)ωi,k,ωi,kE(ρi,k)=ωi,k1)·,ωi,kωi,k!!2σ2和σ2 对应于粗结构。2)用权重过滤:首

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论