




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考专题复习
三角形的内心与外心停课不停学中考专题复习三角形的内心与外心停课不停学理解三角形的内心和外心.中考要求停课不停学理解三角形的内心和外心.中考要求停课不停学1.三角形的内心(1)三角形的内切圆:在三角形内部且与三角形三边都相切的圆;(2)三角形的内心:三角形内切圆的圆心,实质是三角形
的交点;三个内角平分线停课不停学1.三角形的内心三个内角平分线停课不停学解题技巧(3)见到三角形的内心就想以下两点:①角平分线:内心与顶点的连线必然平分三角形的内角.如图,点O为△ABC的内心,连接AO、BO、CO,必有AO平分∠CAB,BO平分∠ABC,CO平分∠ACB②等距:内心到三角形三边的距离必定相等.如图,点O为△ABC的内心,过点O作三边的垂线,必有OD=OE=OF.停课不停学ABCOABCOFDE解题技巧(3)见到三角形的内心就想以下两点:停课不停学ABC2.三角形的外心三条边的垂直平分线停课不停学(1)三角形的外接圆:经过三角形的三个顶点可以作一个圆,这个圆叫作三角形的外接圆;(2)三角形的外心:三角形外接圆的圆心,实质是三角形
的交点;2.三角形的外心三条边的垂直平分线停课不停学(1)三角形的解题技巧(3)见到三角形的外心就想以下两点:①垂直平分线:外心到三角形三边的垂线必然平分三条边.如图,点P为△ABC的外心,若PD⊥AC,PE⊥BC,必有AD=CD,BE=CE.②等距:外心到三角形三个顶点的距离必然相等.如图,点P为△ABC的外心,连接PA、PB、PC,必有PA=PB=PC.停课不停学解题技巧(3)见到三角形的外心就想以下两点:停课不停学(4)与三角形外心有关的角度问题:①外心在三角形的内部三角形为锐角三角形三个角都小于90°;
②外心在三角形的边上三角形为直角三角形有一个角为90°;停课不停学③外心在三角形的外部三角形为钝角三角形有一个角大于90°.(4)与三角形外心有关的角度问题:①外心在三角形的内部三角形为锐角三角形三个角都小于90°;
②外心在三角形的边上三角形为直角三角形有一个角为90°;(4)与三角形外心有关的角度问题:①外心在三角形的内部三角形为锐角三角形三个角都小于90°;
②外心在三角形的边上三角形为直角三角形有一个角为90°;(4)与三角形外心有关的角度问题:①外心在三角形的内部三角形为锐角三角形三个角都小于90°;
②外心在三角形的边上三角形为直角三角形有一个角为90°;(4)与三角形外心有关的角度问题:停课不停学③外心在三角形随堂练习1.如图,⊙O是△ABC的外接圆,则点O是△ABC的()A.三条高线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条内角平分线的交点B停课不停学随堂练习1.如图,⊙O是△ABC的外接圆,则点O是△ABC2.如图,方格纸中,点A、B、C、D、O均为格点,点O是()A.△ABC的内心B.△ABC的外心C.△ACD的内心D.△ACD的外心D停课不停学2.如图,方格纸中,点A、B、C、D、O均为格点,点O是(3.点O是△ABC的外心,点I是△ABC的内心,若∠BIC=145°,则∠BOC的度数为()A.110° B.125°C.130°D.140°D4.如图,点F是△ABC的内心,∠A=50°,则∠BFC=()A.100°B.115°C.130°D.135°B停课不停学3.点O是△ABC的外心,点I是△ABC的内心,若∠BIC5.如图,△ABC中,∠C=90°,AC=4,tanA=,I为△ABC的内心,ID∥AC,IE∥BC,则△IDE的周长为()A.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 简约个人投资协议书
- 男子结婚协议书模板
- 酒店分成协议书范本
- 学校委托协议书模板
- 兼职电工外聘协议书
- 食品代销协议书范本
- 诉讼和解协议书范本
- 火灾赔偿协议书模版
- 简单外包协议书范本
- 联勤保障协议书消防
- 西学中培训结业汇报
- 无人机运输合同模板
- 《诗经》导读学习通超星期末考试答案章节答案2024年
- 《平凡的世界》教学设计 2024-2025学年人教版高中语文选修《中国小说欣赏》
- 2024年四川省成都市“蓉漂”人才荟武候区招聘23人历年(高频重点提升专题训练)共500题附带答案详解
- 网课智慧树知道《运动技能学习与控制(牡丹江师范学院)》章节测试答案
- 7.1.1条件概率(一)课件高二下学期数学人教A版选择性
- 全国高考物理高考题说题比赛一等奖课件物理说题李焕景
- 华为MA5800配置及调试手册
- 巴金名著导读《寒夜》
- 2024年建筑业10项新技术
评论
0/150
提交评论