附件材料文章xu zhang fuel_第1页
附件材料文章xu zhang fuel_第2页
附件材料文章xu zhang fuel_第3页
附件材料文章xu zhang fuel_第4页
附件材料文章xu zhang fuel_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Fuel

ExperimentalstudiesofregenerationheatdutyforCO2desorptionfromdiethyl riamine(DETA)solutioninastrippercolumnpackedwithDixonringrandompacking

XuZhang,KaiyunFu,ZhiwuLiang⇑,WichitpanRongwong,ZhenYang,RaphaelIdem,PaitoonTontiwachwuthikul

JointInternationalCenterforCO2CaptureandStorage(iCCS),ProvialKeyLaboratoryforCost-effectiveUtilizationofFossilFuelAimedatReducingCarbon-dioxideEmissions,DepartmentofChemicalEngineering,HunanUniversity,Changsha410082,PR

highlights

TheregenerationheatdutyofDETAwa perimentallyevaluatedinabenchscalestripperpackedwithDixonring.

TheregenerationheatdutyofDETAwasverysensitivetotheoperationalparameterswithintherangepresentedinthiswork.

TheregenerationheatdutyofDETAwaslowerthanthatofMEAforthesameamountofCO2released.

articleinfo

Articlehistory:

Received8April2014

Receivedinrevisedform3July2014Accepted9July2014

Availableonline30July2014

:

DesorptionCarbondioxide

EnergyconsumptionDiethyl riaminePackedcolumn

Theregenerationheatduty(Qreg,kJ/kgCO2)isacriticalparameterinthepostcombustionCO2captureprocessusingachemicalsolvent.Inthisstudy,theQregofCO2desorptionfromCO2richdiethyl riamine(DETA)solutionswa perimentallyevaluatedinabenchscalestrippercolumnpackedwithDixonringrandompacking.TheexperimentswereconductedtoevaluateQre erasolventflowrate(L)rangeof2.9211.69m3/m2h,amineconcentration(C)rangeof1.04.0kmol/m3andCO2cycliccapacity(Da)rangeof0.210.79mol/mol.ItwasfoundthatQregwasgreatlyinfluencedbyallthethreefactors.Inaddition,acomparisonoftheregenerationperformancesbetweenDETAandmonoethanolamine(MEA)wasperformedtoevaluatethepotentialforDETA’sapplicationintheCO2captureprocess.Theresultsobtainedinthisworkshowedthatforregenerationatthesameabsorptioncapacity,theheatdutyofDETAwaslowerthanthatofMEA.

Ó2014Elsevier .s .

Introduction

Theimplementationofpostcombustioncarbondioxide(CO2)capturefromfossilfuelfiredpowerntsusingreactiveaminesolventsisbyfarthemostpopularforreducingCO2emissions[1].However,themaindrawbackoftheaminebasedCO2captureprocessisthattheconsumptionofheatenergyforsolventregeneration,referredtoasregenerationheatduty(Qreg),whichaccountsforabout70%ofoveralloperatingcost[2],isveryhigh.Thus,thestudyofsavingenergyintheregenerationstepisofvitalimportance.

IntheindustrialCO2captureprocess,Qreg,providedbyheattransferfromanexternalhighertemperatureenergysourcesuchaslowpressure orhotoilinthereboiler,consistsofthree

*Correspondingauthor. .: 7;fax: .

address:z (Z.Liang).

parts:(1)absorptionheat(qabs)forbreakingthechemicalbondbetweenCO2andam ypesolvent,(2)sensibleheat(qsen)forraisingthetemperatureofthesolution,and(3)vaporizationheat(qvap)forevaporatingliquidwatertovaporforCO2strip.Consequently,Qregcanbesignificantlyaffectedbyboththesolventtypeandoperatingconditions.Therefore,acomprehensiveevaluationofQregrequirementforamineregenerationiscrucialtoprovidingaccurateandreliabledatafordesignaswellasaneconomicevaluationoftheaminebasedCO2captureprocess.Uptodate,therearethreedifferentimportantstrategiesforreducingQregoftheprocess,namelydeveloalternativeenergyefficientsolvents,designofhigherperformancedevicesformassandheattransfers,andoptimizationoftheprocessconfiguration.Amongthesestrategies,thedevelopmentofneweffectivesolventsisseentobethebiggestcontributorinthisareaofresearchbecauseitdirectlyaffectsthecaptureperformanceandoperatingconditions.Also,itiseasytoapplytoexistingCO2capturents[3].Presently,

0016-2361/Ó2014Elsevier .

s

.

CO2loadingoftherichsolutions,molCO2/molamineCO2loadingoftheleansolutions,molCO2/molaminedifferenceinrichandleanCO2loading,molCO2/molamine

concentration,kmol/m3

specificheatofheattransferoil,kJ/(kg°C)specificheatofthesolution,J/(mol°C)reboilerheatduty,kJ/h

thesystemenergyloss,kJ/hsolventflowrate,m3/(m2h)

massflowrateofheattransferoil,kg/h

massflowrateofCO2,kg/h

moleflowrateofthesolution,kmol/h

MCO2 molecularweightofCO2,g/mol

molarflowrateofaminesolution,kmol/hpartialpressureofCO2,kParegenerationheatduty,kJ/kg

absorptionheat,kJ/kgsensibleheat,kJ/kgvaporizationheat,kJ/kg

universalgasconstant,J/(mol°C)

temperatureoftheheattransferoilinletthereboiler,°Ctemperatureoftheheattransferoiloutletthereboiler,

°C

temperatureofthesolutioninreboiler,°Ctemperatureofthesolutionatthestripperinlet,°C

2

avarietyofpromisingnewaminetypedabsorbentshasbeendeveloped.Thesecanbedividedintothreecategories:(i)singleaminessuchasdiethyl riamine(DETA)[47],4diethylamino2butanol(DEAB)[8,9],and2(1piperazinyl)ethylamine(PZEA)[10];()blendedamines,suchasmonoethanolamine(MEA)methyldiethanolamine(MDEA),2amino2methyl1pro

oil,respectively.Also,TinandToutaretheinletandoutlettemperaturesoftheheattransferoilfromthereboiler(°C),respectively.

TheQreg(kJ/kg)forsolventregenerationcanbecalculatedfromtheratiooftheeffectivereboilerheatdutyandtheCO2massflowrateasfollows:

HrebHloss

panol(AMP)piperazine(PZ),andPZN,Ndiethylethanolamine(DEEA)[1114];and(i)hybridsolvents,suchasMEAMethanol,

Qreg mCO

ð2Þ

andMDEAionicliquids[15,16].

Diethyl riamine(DETA),whichhasthreeaminefunctional

mCO2

namine

ðarich

alean

ÞMCO2

ð3Þ

ities,hasbeenconsideredasapromisingaminesolventforcapturingCO2becauseofitscharacteristichigherperformancethanMEA(aben arksolvent)intermsofabsorptioncapacity,reactionk icsandmasstransferrate.TheworkofHartonoetal.[7]showsthatthek icsrateconstantofDETAisabout10timeshigherthanthatofMEAat298.1K.Hartonoetal.[6]alsoshowthatDETAhadahighersolubilitycomparedwithotherconventionalamines.Fuetal.[4,5]reportedthatthemasstransferperformanceintermofgasphasevolumetricoverallmasstransfercoefficient(KGaV)ofCO2absorptionintoaqueousDETAinapackedcolumnwasbetterthanthatofMEA.However,QregofDETA,averyimportantparameter,hasnotyetbeenreported,whi akesthe

whereHlossisthesystemenergyloss(kJ/h),mCO2istheCO2massflowrate(kg/h),namineisthemolarflowrateofaminesolution(kmol/h),MCO2isthemolecularweightofCO2(g/mol).arichandaleanaretheCO2loadingsoftherichandleansolutions(mol/mol),respectively.ItshouldbenotedthatHlossinevitablyexistsintheexperiment,andtheapproachtoobtainHlossinthisworkisgiveninSection3.3.

Asmentionedearlier,theregenerationheatduty,Qreg,providedforthesolventregenerationgenerallyludesthreeparts,namelyqabs,qsenandqvap(kJ/kg),asfollows.

Qregqabsþqsenþqvap ð4Þ

properevaluationofDETA’spotentialforuseasanabsorbentforCO2capturetobe plete.ItisthereforeessentialtoperformsuchstudiesusingDETA.Apackedcolumnhasbeenconsidered

whereqabs,qsen,

equations:

andqvapcanbecalculatedasinthefollowing

tobeapracticalequipmenttouseforinvestigatingQreginstudiesofamineregeneration.ThisisbecauseapackedcolumncanprovideanoperatingsystemsimilartotherealCO2captureprocess,

qabs

RdðI O2Þ

dð1=TÞ

ð5Þ

andhasbeenextensivelyappliedtoinvestigatingtheregenerationperformanceofdifferentaminesolvents[1721].

Inthepresentwork,QregofCO2desorptionfromaqueoussolutionsofDETAwa perimentallymeasuredinabenchscalestripperpackedwithDixonringrandompacking.Theeffectsofkeyoperatingparameters, ludingsolventflowrate(L),amineconcentration(C)andCO2cycliccapacity(Da)onQregwereinvestigated.Furthermore,Qregaswellasitscomponents(i.e.,qabs,qsenandqvap)forDETAwerecomparedwiththoseofMEA.Theresultsobtainedarepresentedanddiscussedinthispaper.

Regenerationheatduty

Inthiswork,thereboilerheatduty(Hreb,kJ/h),whichwassuppliedbyheattransferoil,wascalculatedbythefollowingequation:

Hreb moilCoil;fðTin ToutÞ ð1Þ

wheremoilandCoil,frepresentthemassflowrate(kg/h),specific

heat(2.3kJ/kg°C,asprovidedbythevendor)oftheheattransfer

qsenmsCsðTrebTfeedÞ=mCO2 ð6Þ

qvapQregqabsqsen ð7Þ

whereRistheuniversalgasconstant(J/(mol°C)),PCO2istheCO2partialpressure(kPa),Tisthetemperature(°C),msandCsdenotethemolarflowrate(kmol/h)andthespecificheatofthesolution(J/(mol°C)),respectively.TrebandTfeedarethetemperaturesofthesolutioninthereboilerandthestripperinlet(°C),respectively.ThereactionheatandthespecificheatofsolutionforDETAandMEAwereobtainedfromtheliture[2224].

Experimentalsection

Chemicals

ReagentgradeDETAandMEAwerepurchasedfromTianjinKermelChemicalReagentCo.., ,eachwithpurityofP98.0%.CommercialgradeCO2wasdbyChangshaRizhenGasCo.

., ,withapurityofP99.9%.

Samplesysis

Theaminesolutionswerepreparedbydilutingconcentratedaminewithdeionizedwandwereverifiedbytitrationusingaknownvolumeof1.0NHClwithmethylorangeastheindicator.TheCO2loadingintheliquidsamplesweredeterminedbythestandardmethodgivenbytheAssociationofOfficialyticalChemists(AOAC)usingaChittickapparatus[25].

Experimentalapparatusandprocedure

TheschematicdiagramofthesolventregenerationexperimentalsetupisshowninFig.1.Thedesorptionexperimentswereconductedinabenchscalestripper(28.0mminternaldiame nd0.50mpackedheight)packedwith316LstainlesssteelDixonring[26,27](randompacking,U3 3mm,specificsurfaceareaof2275m2/m3,providedby Haohua,Tianjin,UnivtechCo.,

., ).Thestripperwasmadeofadoublelayerglasswithvacuuminterlayerforheatinsulation.Acondenserwaspositionedonthetopofthestrippertopreventthelossesofamineandwater.Thereboilerwasatriplelayerglassreactionkettlewiththeaminesolutioncedinthekettle,heatingoilflowingbetweentheinnermostandmiddlelayers,andavacuumbetweenthemiddleandoutermostlayers.Inadditiontothestripperandreboiler,someauxiliaryequipmentswerealsousedinthiswork, luding:twoconstantliquidflowpumpswith±0.1rpmaccuracy(modelBT10002,BaodingQiliPrecisionPumpCo., ., )forcirculatingtheaminesolution,twothermostaticwaterbathswith±1Kaccuracy(modelDZKW4,BeijingZhongxingweiyeInstrumentCo., ., ),acirculatorforpumheatingoil(modelGX2005,ZhengzhouBokeInstrumentEquipmentCo., ., ),ametaltuberotameterwith±1.5%accuracy(modelSTZ15M2H,ShaanxiShangtaiAutomationInstrumentationCo., ., )formeasuringtheflowrateofheatingoil,aninligentmultipointtemperaturedataloggerwith±0.5%FSaccuracy(modelXMX200811,BeijingGiliseInstrumentationScience&TechnologyCo., .,),agasflowmeterwith±(1.5+0.2FS)%accuracy(model

MF4003308CVC,Siargo(Chengdu),., ),two20Lliquidreservoirs,andaheatexchangerfortheheattransferfromtheleansolutiontotherichsolution.

Therichsolutionusedinthisworkwaspreparedbyinitiallydilutingconcentratedaminewithdeionizedwateruntilthedesiredconcentrationwasreachedasconfirmedbytitration

1.0NHClusingmethylorangeasindicator.Afterthis,CO2wasloadedintothesolutionuntilbothdesiredamineconcentrationandCO2loadingwerereached.ConfirmationforboththeDETAconcentrationandCO2loadingwasobtainedbytitration

1.0NHClinaChittickapparatususingmethylorangeasindicator.

Eachexperimentalrunbeganbyintroducingabout2Lofrichsolutionintothereboiler,thentheheatingoilwascirculatedandcoolingwaterwasflowedthroughthecondenser.Oncethesolutioninthereboilerreachedthedesiredtemperature,therichsolutionwasfedfromthetopofthestripperatagivenflowrateafterbeingpreheatedintheheatexchanger.ThesolventflowrateofrichDETAsolutionwascalibratedbymeasuringthevolumeoftherichliquidoveraspecifiedlengthoftimeintoagraduatedcylinder.Theflowratewascalculatedasvolume/time.Inthestripper,therichsolutionfloweddownfromthetopofthestripperandcountercurrentlycontactedthe vaporizedfromthereboiler.Thisvaporwascondensedintheoverheadcondenser,andreturnedtothestripperwhileonlythestrippedCO2wasallowedtoleavethesystem.Thehotleansolutionexitingfromthereboilerwasfedthroughthepreheatingheatexchangerandthenfedtoastainlesssteelliquidreservoir.

Thedesorptionexperimentwasperformedforatleast3htoallowthesystemtoreachsteadystateatwhichallthetemperatures,flowrates,andCO2loadingwerestable.Aftercollectingallthesteadystatedata,thesupplyoftherichsolutiontothestripperwasstopped,whilethecirculationsofheatingoilthroughthereboilerandcoolingwaterthroughtheoverheadcondensercontinueduntiltherewasnomoreCO2generatedfromtheaminesolutioninreboiler,i.e.nomoreCO2flowedthroughthegasflowmeter.Atthistime,theinletandoutlettemperaturesaswellas

F2

T1

Condenser

RegenerationColumn

Rich-LeanHeatExchanger

F1

Rich-solutioninlet

Agitator

Lean-solutionoutlet

T2

F4

T3F3

T4

Gasflowmeter

Fig.1.Schematicdiagramofdesorptionprocess.

themassflowrateoftheheatingoilwererecordedinordertoestimatetheheatloss(calculatedfromEq.(1))consumedbythereboilerandtheoverheadcondenserundernonstripconditions.Amassbalanceerrorwascalculatedforeachexperimentruntoensuretheresultswereaccurateandreliable.Allofthemassbalanceerrorsobtainedinthisworkwereunder10%.

8000

Sakwattanapongetal.[19]

Regenerationheatduty(kJ/kgCO2)

6000

4000

Resultsanddiscussions

Evaluationofthestripperperformance

InordertoevaluatetheperformanceofthestrippercolumnpackedwithDixonringrandompackingusedinthiswork,QregforMEAsystemobtainedfromthisworkwerecomparedwith

2000

0

0.24 0.27 0.30 0.33 0.36

LeanCO2loading(mol/mol)

theexperimentalresultsforMEAfromSakwattanapongetal.[19].Intheirwork,thestrippercolumn(24mm mend1.0minpackedheight)waspackedwithstainlesssteelSulzerDXstructuredpacking.Toensurefaircomparisonsbetweenthesetwocases,alltheoperationalconditionsusedinthisworkwerethesameaswiththoseintheliture.

ItisseenfromFig.2thatQregdecreasedwhentheleanCO2load

ingwas reased.TheserelationshipsbetweenQregandaleanwerefittedwithapowerfunction,asprovidedinthefiguresforthisworkandtheworkofSakwattanapongetal.[19].TheR2valueswere0.90and0.93,respectively.However,thestripperperformanceinthisworkwasslightlylowerthanthatoftheli ture[19].Thisismostlikelyduetotwofactors:(i)thepackingheightofthestripperinthisworkwasshorterthanthatoftheworkofSakwattanapongetal.[19](0.50mand1.00m,respectively).Theshorterpackingheightledtolesscontacttimeandsurfaceareaforthemassandheattransfersinthestripperbetweenthefallingdownrichsolutionandtherisingvapor;()DixonringrandompackingwasusedinthisworkwhileDXstructuredpackingwasusedintheworkofSakwattanapongetal.[19].Randompackingcaneasilygeneratebridgingandcavitationphenomenawhichwilldecreasethedistributionsofgasandliquidphasesinthestripperandthendecreasethemassandheattransferperformance[5].However,eventhoughtheperformanceofDixonringpackingwasslightlylowerthanthatofDXstructuredpacking,themanufacturingcostoftherandompackingisrelativelylower.Consequently,randompackingisstillextensivelyusedinmanyindustries.Hence,theuseofDixonringpackinginthestripperinthisworkcouldprovideameaningfulinvestigationoftheregenerationperformanceofDETA.

Effectofsingleoperatingparametersontheregenerationheatduty

Inthepresentsection,QregofDETAwasdeterminedoverthesolventflowrate(L)rangeof2.9211.69m3/m2h(solventflowratewasmeasuredinrichCO2stream),concentration(C)rangeof1.04.0kmol/m3(DETAconcentrationwasmeasuredintherichCO2stream),andCO2cycliccapacity(Da,calculatedbasedonafixedrichloadingof1.40mol/mol)rangeof0.210.79mol/mol.ItshouldbenotedthattheinvestigatedCO2leanloadingsofaqueousDETAsolutioninthisworkwereintherangeof0.611.19mol/mol,whichweremuchhigherthanthatofMEAsolution(normallyintherangeof0.200.35mol/mol).ThisrangeforDETAwasselectedbasedontheconsiderationsof:(i)theequilibriumsolubilityofaqueousDETA(>1.40mol/mol)andthemasstransferperformanceofDETAbeingmuchhigherthanthoseofMEA[5,6],and()preventingexcessiveregenerationenergyconsumptioninthelowCO2loadingregion[19,28].Inaddition,theconcentrationsofDETA(1.04.0kmol/m3)usedwerealsolowerthanthatofMEA(5.0kmol/m3whichisacommonconcentrationusedforMEA).

Fig.2.Desorptionperformancecomparison(desorptionsolventisbothMEA,solventflowrate=6(m3/m2h);richCO2loading=0.50mol/mol;temperatureoftherichaminesolutionfeedtothestripper90°C).

kJ/kgCO2

8000

Regenerationheatduty

6000

4000

2000

0

1.0 2.0 3.0 4.0 5.0

DETAconcentrationkmol/m3

Fig.3.EffectofDETAconcentrationoftherichCO2solutionontheregenerationheatduty.

ThisisbecauseDETApossessesahigherabsorptioncapacity(>1.4mol/mol)thanMEAasmentionedearly,andtheviscosityofDETAsolutionishigherthanthatofMEA.Forexample,theviscosityofDETAandMEAat4.0kmol/m3are8.928and1.832mPa/s,respectively[29,30].ThehighviscosityofDETAsolutionatthehighconcentrationcancauselowmobilitythroughtheabsorberandstripperaswellasthepipes,leadingtopoormassandheattransferperformanceandhightransportcost.

TheeffectofDETAconcentrationontheregenerationheatdutyisshowninFig3.Thefigureshowsthatan reaseinDETAconcentrationresultsinadecreaseofQreg.ThisisbecausetheCO2partialpressureinthegasphase(orCO2concentrationintheliquidphase)andthedrivingformasstransfer reaseasDETAconcentration reasesresultinginareductioninQregforregeneration.However,itshouldbenotedthatthe reaseofamineconcentrationcouldleadtosomepotentialproblems,suchassolventdegradationandequipmentcorrosion[31,32].Also,highviscosityofDETAsolutionathighconcentrationscanleadtopoormassandheattransferperformance,aspreviouslymentioned.

Forthesereasons,theeffectofCO2cycliccapacity(Da)onQregwasstudiedonlyfortwoDETAconcentrationsof2.0and3.0kmol/m3.AsshowninFig.3,at1.0kmol/m3,Qregwashighwhileat

4.0kmol/m3,highsolutionviscosityisobserved.TheresultsfortheeffectofCO2cycliccapacity(Da)onQregforDETAconcentrationsof2.0and3.0kmol/m3areshowninFig.4.ThefigureshowsthatQreg reasesastheCO2cycliccapacity(Da) reases(orasthealeandecreases).Thisisbecausethe reaseofaleandirectlyaffectstheequilibriumpartialpressureofCO2andreducesthe

C=2kmol/m3;L=3.90m3/m2·h

C=3kmol/m3;L=2.92m3/m2·h

Regenerationheatduty(kJ/kgCO2)

8000 (LCDa,kmol/m2h).However,inmostindustrialnts,thetotalabsorptioncapacityandamountofcapturedCO2(kmol/h)areconstantbecauseofthefixedgasflowrateandcomposition

6000 offeedgas;aswell,theoutletconcentrationofCO2fromtheabsor

berisfixedertainlevel(61.0vol.%forexample).Therefore,itesessentialtoperformapreliminaryexplorationofthesyn

4000

2000

0

0.30 0.40 0.50 0.60 0.70

CO2cycliccapacity(mol/mol)

ergisticeffectsofL,C,andDaonQreg.Thesewerestudiedbyfixingoneparame taconstantvalueandvaryingtheratiooftheothertwoparametersinordertokeepthetotalabsorptioncapacityconstant.

Inordertoexam hesynergisticeffectofDaandLonQreg,thevaluesofCandLDawerefixedatcertainvalues.TheexperimentswereconductedoverDaintherangeof0.210.79mol/mol,Lintherangeof2.9211.69m3/m2h,andatCof2.0kmol/m3.ItcanbeseenfromFig.6thatQregdecreaseswhenDa reasesfrom

0.21to0.31mol/mol,but reasesasDa reasesfrom0.31to

Fig.4.EffectofCO2cycliccapacityofDETAsolutionontheregenerationheatduty.

drivingformasstransferinthesystem.ForahigherCO2cycliccapacityoralowerleanloadingoftheoutletDETAsolution,morewatervaporisrequiredtostripCO2.Thisresultsinasignific creaseofqvapandconsequently,Qreg.Itc sobeseenthatQregsharply reasesathighCO2cycliccapacity.Thisrevealsthatexcessiveenergiesareconsumedforregenerationshowingthatitmightnotbeeconomicaltooperatethesystemusingacycliccapacityhigherthan0.63mol/mol.ThesesamephenomenawerepreviouslyreportedbySakwattanapongetal.[19]andGalindoetal.[28]forMEAandDEAsolutions.

Theeffectofsolventflowrateonregenerationheatdutywasnotstraightforward,asshowninFig.5.Intheseexperiments,theCO2leanloadingsweresetat1.0mol/moland0.84mol/moltoprovidecycliccapacityof0.40mol/moland0.56mol/mol,respectively.Asseeninthefigure,Qregreducedwithsolventflowrateatthelowsolventflowratesbecausetheeffectiveinterfacialareainstriperwas reased[33],resultinginenhancementsofbothmassandheattransferperformance.Ontheotherhand,athighersolventflowrates,Qregwas reasedduetotheshorterresidencetimeofthesolventinthestrippercolumnandmoreheatbeingrequiredinthereboilertoachievethesameDa.

ThestudyoftheeffectofL,CandDaontheregenerationheatduty

byfixingthetotalabsorptioncapacityconstant

Ashasbeenshown,L,C,andDasignificantlyaffectQregandcandirectlychangethetotalabsorptioncapacityoftheprocess

0.79mol/mol.Thereasonsareasfollows:an reaseofDaledtoadecreaseofLinordertoobtainthesametotalabsorptioncapacity;theseresultedinalowerqsenaswellasQregrequiredforraisingthesolventtemperatureatlowCO2cycliccapacities.Ontheotherhand,atahigherCO2cycliccapacity,the reaseofQregistheresultofthe reaseofqvaprequiredforregenerationtoalowerleanloading,aspreviouslydescribed.ThisresultrevealsthatthesolventflowratehadagreaterimpactontheQregthanthecycliccapacityatlowcycliccapacities.Ontheotherhand,thesignificanceofsolventflowratewasloweratahighcycliccapacity.

Fig.7showsthesynergisticeffectofLandConQregwiththecycliccapacitybeingkeptconstantat0.50mol/mol.ItcanbefoundthatQregreasedcontinuouslywithanreaseofLfrom2.92to

11.69m3/m2horwithadecreaseofDETAconcentrationfrom4.0to1.0kmol/m3.The reaseofLdidnotreducetheQregatlowL,asshowninFig.5.Thisimpliesthatthe reaseofQregwasmostlikelyduetothedecreaseofDETAconcentrationorthefactthattheconcentrationofDETAexhibitedamoreimportantroleonQreg.Inaddition,itcanbefoundfromthecomparisonbetweenFigs.3and7thattheregenerationheatdutiesatthesameamineconcentrationwerealmostthesameevenwhentheLandDawerechanged.ThisalsorevealsthattheregenerationheatdutyofDETAisverysensitivetoDETAconcentration.

ThesynergisticeffectofCandDaontheQregwerealsoinvestigated.TheresultsareshowninFig.8.TheQregdecreasedcontinuouslyastheCwas reasedfrom2.0to4.0kmol/m3.Thisisbecausethereisan reaseofdriving formasstransferwithan reaseofDETAconcentration,asdescribedpreviously;also,adecreaseofleanloadingfromtheloweringofDareducesqvap,andconsequently,theQregofthesystem.

8000

a×L=2.40m3/m2·h;C=2.0kmol/m3

Regenerationheatduty(kJ/kgCO2)

8000

6000

Regenerationheatduty(kJ/kgCO2)

6000

4000

4000

2000

2000

0

3.0 6.0 9.0 12.0

Solventflowrate(m3/m2·h)

Fig.5.EffectofsolventflowrateoftherichCO2solutionontheregenerationheatduty.

0

0.2 0.4 0.6 0.8

CO2cycliccapacity(mol/mol)

Fig.6.ThesynergisticeffectofCO2cycliccapacityandsolventflowrateoftherichCO2solutionontheregenerationheatduty.

Vaporizationheat

Regenerationheatduty(kJ/kgCO2)

Regenerationheatduty(kJ/kgCO2)

8000 8000

L×C=11.5kmol/m2·h;a0.50mol/mol

6000 6000

4000 4000

2000 2000

0

3.0 6.0 9.0 12.0

Solventflowrate(m3/m2·h)

0

Case1(MEA) Case2(DETA)

Absorptionsolvent

Case3(DETA)

Fig.7.ThesynergisticeffectofDETAconcentrationandsolventflowrateoftherichCO2solutionontheregenerationheatduty.

DETAisanewaminewhichisscreenedforpossibleCO2absorptionapplication.Beforeitcanbeusedinthefield,alltheparameters,especiallytheoneswiththepossibilityofsynergies,shouldbeexploredextensively.Inthispaper,onlythepreliminaryexplorationoftheparametersisattemptedasseeninFigs.68,justtoprovidepreliminarytrends.Subsequentworkwillexploremoredeeplyintosomeofthemoreinterestingscenarios,suchasthesynergybetweenCO2cycliccapacity(Da)andamineflowrate(L).

ComparativeregenerationperformancesofDETAandMEA

Inthepresentwork,Qregaswellasitsthreecomponents(i.e.,qabs,qsen,qvap)ofDETAwerecomparedwiththoseofMEA(atitsoptimizedconditions).TheMEAconcentrationat5.0kmol/m3aswellasleanandrichCO2loadingsof0.25and0.50mol/mol,respectively,hasbeenconsideredtobetheoptimizedconditionforMEAbasedpostcombustionCO2captureprocess,andhasbeenusedasthebasecaseforcomparisonwithothersolventsinpilotnttestsandsimulationstudies[3437].Therefore,QregofMEAattheseconditionscanreasonablybeconsideredasabenchmarkforcomparisoninthiswork.Threecasesofoperations,

luding,case1ofMEA,andcases2and3ofDETA,withthesame

Fig.9.ComparativeregenerationperformancesofDETAandMEA(theconditionsofcases1–3were:case(1),Lof4.38(m3/m2h)&Cof5.0(kmol/m3)&Daof0.214(mol/mol);case(2),Lof3.90(m3/m2h)&Cof2.0(kmol/m3)&Daof0.59(mol/mol)andcase(3),Lof4.87(m3/m2h)&Cof2.0(kmol/m3)&Daof0.483(mol/mol)).

wer terthan

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论