版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Fuel
ExperimentalstudiesofregenerationheatdutyforCO2desorptionfromdiethyl riamine(DETA)solutioninastrippercolumnpackedwithDixonringrandompacking
XuZhang,KaiyunFu,ZhiwuLiang⇑,WichitpanRongwong,ZhenYang,RaphaelIdem,PaitoonTontiwachwuthikul
JointInternationalCenterforCO2CaptureandStorage(iCCS),ProvialKeyLaboratoryforCost-effectiveUtilizationofFossilFuelAimedatReducingCarbon-dioxideEmissions,DepartmentofChemicalEngineering,HunanUniversity,Changsha410082,PR
highlights
TheregenerationheatdutyofDETAwa perimentallyevaluatedinabenchscalestripperpackedwithDixonring.
TheregenerationheatdutyofDETAwasverysensitivetotheoperationalparameterswithintherangepresentedinthiswork.
TheregenerationheatdutyofDETAwaslowerthanthatofMEAforthesameamountofCO2released.
articleinfo
Articlehistory:
Received8April2014
Receivedinrevisedform3July2014Accepted9July2014
Availableonline30July2014
:
DesorptionCarbondioxide
EnergyconsumptionDiethyl riaminePackedcolumn
Theregenerationheatduty(Qreg,kJ/kgCO2)isacriticalparameterinthepostcombustionCO2captureprocessusingachemicalsolvent.Inthisstudy,theQregofCO2desorptionfromCO2richdiethyl riamine(DETA)solutionswa perimentallyevaluatedinabenchscalestrippercolumnpackedwithDixonringrandompacking.TheexperimentswereconductedtoevaluateQre erasolventflowrate(L)rangeof2.9211.69m3/m2h,amineconcentration(C)rangeof1.04.0kmol/m3andCO2cycliccapacity(Da)rangeof0.210.79mol/mol.ItwasfoundthatQregwasgreatlyinfluencedbyallthethreefactors.Inaddition,acomparisonoftheregenerationperformancesbetweenDETAandmonoethanolamine(MEA)wasperformedtoevaluatethepotentialforDETA’sapplicationintheCO2captureprocess.Theresultsobtainedinthisworkshowedthatforregenerationatthesameabsorptioncapacity,theheatdutyofDETAwaslowerthanthatofMEA.
Ó2014Elsevier .s .
Introduction
Theimplementationofpostcombustioncarbondioxide(CO2)capturefromfossilfuelfiredpowerntsusingreactiveaminesolventsisbyfarthemostpopularforreducingCO2emissions[1].However,themaindrawbackoftheaminebasedCO2captureprocessisthattheconsumptionofheatenergyforsolventregeneration,referredtoasregenerationheatduty(Qreg),whichaccountsforabout70%ofoveralloperatingcost[2],isveryhigh.Thus,thestudyofsavingenergyintheregenerationstepisofvitalimportance.
IntheindustrialCO2captureprocess,Qreg,providedbyheattransferfromanexternalhighertemperatureenergysourcesuchaslowpressure orhotoilinthereboiler,consistsofthree
*Correspondingauthor. .: 7;fax: .
address:z (Z.Liang).
parts:(1)absorptionheat(qabs)forbreakingthechemicalbondbetweenCO2andam ypesolvent,(2)sensibleheat(qsen)forraisingthetemperatureofthesolution,and(3)vaporizationheat(qvap)forevaporatingliquidwatertovaporforCO2strip.Consequently,Qregcanbesignificantlyaffectedbyboththesolventtypeandoperatingconditions.Therefore,acomprehensiveevaluationofQregrequirementforamineregenerationiscrucialtoprovidingaccurateandreliabledatafordesignaswellasaneconomicevaluationoftheaminebasedCO2captureprocess.Uptodate,therearethreedifferentimportantstrategiesforreducingQregoftheprocess,namelydeveloalternativeenergyefficientsolvents,designofhigherperformancedevicesformassandheattransfers,andoptimizationoftheprocessconfiguration.Amongthesestrategies,thedevelopmentofneweffectivesolventsisseentobethebiggestcontributorinthisareaofresearchbecauseitdirectlyaffectsthecaptureperformanceandoperatingconditions.Also,itiseasytoapplytoexistingCO2capturents[3].Presently,
0016-2361/Ó2014Elsevier .
s
.
CO2loadingoftherichsolutions,molCO2/molamineCO2loadingoftheleansolutions,molCO2/molaminedifferenceinrichandleanCO2loading,molCO2/molamine
concentration,kmol/m3
specificheatofheattransferoil,kJ/(kg°C)specificheatofthesolution,J/(mol°C)reboilerheatduty,kJ/h
thesystemenergyloss,kJ/hsolventflowrate,m3/(m2h)
massflowrateofheattransferoil,kg/h
massflowrateofCO2,kg/h
moleflowrateofthesolution,kmol/h
MCO2 molecularweightofCO2,g/mol
molarflowrateofaminesolution,kmol/hpartialpressureofCO2,kParegenerationheatduty,kJ/kg
absorptionheat,kJ/kgsensibleheat,kJ/kgvaporizationheat,kJ/kg
universalgasconstant,J/(mol°C)
temperatureoftheheattransferoilinletthereboiler,°Ctemperatureoftheheattransferoiloutletthereboiler,
°C
temperatureofthesolutioninreboiler,°Ctemperatureofthesolutionatthestripperinlet,°C
2
avarietyofpromisingnewaminetypedabsorbentshasbeendeveloped.Thesecanbedividedintothreecategories:(i)singleaminessuchasdiethyl riamine(DETA)[47],4diethylamino2butanol(DEAB)[8,9],and2(1piperazinyl)ethylamine(PZEA)[10];()blendedamines,suchasmonoethanolamine(MEA)methyldiethanolamine(MDEA),2amino2methyl1pro
oil,respectively.Also,TinandToutaretheinletandoutlettemperaturesoftheheattransferoilfromthereboiler(°C),respectively.
TheQreg(kJ/kg)forsolventregenerationcanbecalculatedfromtheratiooftheeffectivereboilerheatdutyandtheCO2massflowrateasfollows:
HrebHloss
panol(AMP)piperazine(PZ),andPZN,Ndiethylethanolamine(DEEA)[1114];and(i)hybridsolvents,suchasMEAMethanol,
Qreg mCO
ð2Þ
andMDEAionicliquids[15,16].
Diethyl riamine(DETA),whichhasthreeaminefunctional
mCO2
namine
ðarich
alean
ÞMCO2
ð3Þ
ities,hasbeenconsideredasapromisingaminesolventforcapturingCO2becauseofitscharacteristichigherperformancethanMEA(aben arksolvent)intermsofabsorptioncapacity,reactionk icsandmasstransferrate.TheworkofHartonoetal.[7]showsthatthek icsrateconstantofDETAisabout10timeshigherthanthatofMEAat298.1K.Hartonoetal.[6]alsoshowthatDETAhadahighersolubilitycomparedwithotherconventionalamines.Fuetal.[4,5]reportedthatthemasstransferperformanceintermofgasphasevolumetricoverallmasstransfercoefficient(KGaV)ofCO2absorptionintoaqueousDETAinapackedcolumnwasbetterthanthatofMEA.However,QregofDETA,averyimportantparameter,hasnotyetbeenreported,whi akesthe
whereHlossisthesystemenergyloss(kJ/h),mCO2istheCO2massflowrate(kg/h),namineisthemolarflowrateofaminesolution(kmol/h),MCO2isthemolecularweightofCO2(g/mol).arichandaleanaretheCO2loadingsoftherichandleansolutions(mol/mol),respectively.ItshouldbenotedthatHlossinevitablyexistsintheexperiment,andtheapproachtoobtainHlossinthisworkisgiveninSection3.3.
Asmentionedearlier,theregenerationheatduty,Qreg,providedforthesolventregenerationgenerallyludesthreeparts,namelyqabs,qsenandqvap(kJ/kg),asfollows.
Qregqabsþqsenþqvap ð4Þ
properevaluationofDETA’spotentialforuseasanabsorbentforCO2capturetobe plete.ItisthereforeessentialtoperformsuchstudiesusingDETA.Apackedcolumnhasbeenconsidered
whereqabs,qsen,
equations:
andqvapcanbecalculatedasinthefollowing
tobeapracticalequipmenttouseforinvestigatingQreginstudiesofamineregeneration.ThisisbecauseapackedcolumncanprovideanoperatingsystemsimilartotherealCO2captureprocess,
qabs
RdðI O2Þ
dð1=TÞ
ð5Þ
andhasbeenextensivelyappliedtoinvestigatingtheregenerationperformanceofdifferentaminesolvents[1721].
Inthepresentwork,QregofCO2desorptionfromaqueoussolutionsofDETAwa perimentallymeasuredinabenchscalestripperpackedwithDixonringrandompacking.Theeffectsofkeyoperatingparameters, ludingsolventflowrate(L),amineconcentration(C)andCO2cycliccapacity(Da)onQregwereinvestigated.Furthermore,Qregaswellasitscomponents(i.e.,qabs,qsenandqvap)forDETAwerecomparedwiththoseofMEA.Theresultsobtainedarepresentedanddiscussedinthispaper.
Regenerationheatduty
Inthiswork,thereboilerheatduty(Hreb,kJ/h),whichwassuppliedbyheattransferoil,wascalculatedbythefollowingequation:
Hreb moilCoil;fðTin ToutÞ ð1Þ
wheremoilandCoil,frepresentthemassflowrate(kg/h),specific
heat(2.3kJ/kg°C,asprovidedbythevendor)oftheheattransfer
qsenmsCsðTrebTfeedÞ=mCO2 ð6Þ
qvapQregqabsqsen ð7Þ
whereRistheuniversalgasconstant(J/(mol°C)),PCO2istheCO2partialpressure(kPa),Tisthetemperature(°C),msandCsdenotethemolarflowrate(kmol/h)andthespecificheatofthesolution(J/(mol°C)),respectively.TrebandTfeedarethetemperaturesofthesolutioninthereboilerandthestripperinlet(°C),respectively.ThereactionheatandthespecificheatofsolutionforDETAandMEAwereobtainedfromtheliture[2224].
Experimentalsection
Chemicals
ReagentgradeDETAandMEAwerepurchasedfromTianjinKermelChemicalReagentCo.., ,eachwithpurityofP98.0%.CommercialgradeCO2wasdbyChangshaRizhenGasCo.
., ,withapurityofP99.9%.
Samplesysis
Theaminesolutionswerepreparedbydilutingconcentratedaminewithdeionizedwandwereverifiedbytitrationusingaknownvolumeof1.0NHClwithmethylorangeastheindicator.TheCO2loadingintheliquidsamplesweredeterminedbythestandardmethodgivenbytheAssociationofOfficialyticalChemists(AOAC)usingaChittickapparatus[25].
Experimentalapparatusandprocedure
TheschematicdiagramofthesolventregenerationexperimentalsetupisshowninFig.1.Thedesorptionexperimentswereconductedinabenchscalestripper(28.0mminternaldiame nd0.50mpackedheight)packedwith316LstainlesssteelDixonring[26,27](randompacking,U3 3mm,specificsurfaceareaof2275m2/m3,providedby Haohua,Tianjin,UnivtechCo.,
., ).Thestripperwasmadeofadoublelayerglasswithvacuuminterlayerforheatinsulation.Acondenserwaspositionedonthetopofthestrippertopreventthelossesofamineandwater.Thereboilerwasatriplelayerglassreactionkettlewiththeaminesolutioncedinthekettle,heatingoilflowingbetweentheinnermostandmiddlelayers,andavacuumbetweenthemiddleandoutermostlayers.Inadditiontothestripperandreboiler,someauxiliaryequipmentswerealsousedinthiswork, luding:twoconstantliquidflowpumpswith±0.1rpmaccuracy(modelBT10002,BaodingQiliPrecisionPumpCo., ., )forcirculatingtheaminesolution,twothermostaticwaterbathswith±1Kaccuracy(modelDZKW4,BeijingZhongxingweiyeInstrumentCo., ., ),acirculatorforpumheatingoil(modelGX2005,ZhengzhouBokeInstrumentEquipmentCo., ., ),ametaltuberotameterwith±1.5%accuracy(modelSTZ15M2H,ShaanxiShangtaiAutomationInstrumentationCo., ., )formeasuringtheflowrateofheatingoil,aninligentmultipointtemperaturedataloggerwith±0.5%FSaccuracy(modelXMX200811,BeijingGiliseInstrumentationScience&TechnologyCo., .,),agasflowmeterwith±(1.5+0.2FS)%accuracy(model
MF4003308CVC,Siargo(Chengdu),., ),two20Lliquidreservoirs,andaheatexchangerfortheheattransferfromtheleansolutiontotherichsolution.
Therichsolutionusedinthisworkwaspreparedbyinitiallydilutingconcentratedaminewithdeionizedwateruntilthedesiredconcentrationwasreachedasconfirmedbytitration
1.0NHClusingmethylorangeasindicator.Afterthis,CO2wasloadedintothesolutionuntilbothdesiredamineconcentrationandCO2loadingwerereached.ConfirmationforboththeDETAconcentrationandCO2loadingwasobtainedbytitration
1.0NHClinaChittickapparatususingmethylorangeasindicator.
Eachexperimentalrunbeganbyintroducingabout2Lofrichsolutionintothereboiler,thentheheatingoilwascirculatedandcoolingwaterwasflowedthroughthecondenser.Oncethesolutioninthereboilerreachedthedesiredtemperature,therichsolutionwasfedfromthetopofthestripperatagivenflowrateafterbeingpreheatedintheheatexchanger.ThesolventflowrateofrichDETAsolutionwascalibratedbymeasuringthevolumeoftherichliquidoveraspecifiedlengthoftimeintoagraduatedcylinder.Theflowratewascalculatedasvolume/time.Inthestripper,therichsolutionfloweddownfromthetopofthestripperandcountercurrentlycontactedthe vaporizedfromthereboiler.Thisvaporwascondensedintheoverheadcondenser,andreturnedtothestripperwhileonlythestrippedCO2wasallowedtoleavethesystem.Thehotleansolutionexitingfromthereboilerwasfedthroughthepreheatingheatexchangerandthenfedtoastainlesssteelliquidreservoir.
Thedesorptionexperimentwasperformedforatleast3htoallowthesystemtoreachsteadystateatwhichallthetemperatures,flowrates,andCO2loadingwerestable.Aftercollectingallthesteadystatedata,thesupplyoftherichsolutiontothestripperwasstopped,whilethecirculationsofheatingoilthroughthereboilerandcoolingwaterthroughtheoverheadcondensercontinueduntiltherewasnomoreCO2generatedfromtheaminesolutioninreboiler,i.e.nomoreCO2flowedthroughthegasflowmeter.Atthistime,theinletandoutlettemperaturesaswellas
F2
T1
Condenser
RegenerationColumn
Rich-LeanHeatExchanger
F1
Rich-solutioninlet
Agitator
Lean-solutionoutlet
T2
F4
T3F3
T4
Gasflowmeter
Fig.1.Schematicdiagramofdesorptionprocess.
themassflowrateoftheheatingoilwererecordedinordertoestimatetheheatloss(calculatedfromEq.(1))consumedbythereboilerandtheoverheadcondenserundernonstripconditions.Amassbalanceerrorwascalculatedforeachexperimentruntoensuretheresultswereaccurateandreliable.Allofthemassbalanceerrorsobtainedinthisworkwereunder10%.
8000
Sakwattanapongetal.[19]
Regenerationheatduty(kJ/kgCO2)
6000
4000
Resultsanddiscussions
Evaluationofthestripperperformance
InordertoevaluatetheperformanceofthestrippercolumnpackedwithDixonringrandompackingusedinthiswork,QregforMEAsystemobtainedfromthisworkwerecomparedwith
2000
0
0.24 0.27 0.30 0.33 0.36
LeanCO2loading(mol/mol)
theexperimentalresultsforMEAfromSakwattanapongetal.[19].Intheirwork,thestrippercolumn(24mm mend1.0minpackedheight)waspackedwithstainlesssteelSulzerDXstructuredpacking.Toensurefaircomparisonsbetweenthesetwocases,alltheoperationalconditionsusedinthisworkwerethesameaswiththoseintheliture.
ItisseenfromFig.2thatQregdecreasedwhentheleanCO2load
ingwas reased.TheserelationshipsbetweenQregandaleanwerefittedwithapowerfunction,asprovidedinthefiguresforthisworkandtheworkofSakwattanapongetal.[19].TheR2valueswere0.90and0.93,respectively.However,thestripperperformanceinthisworkwasslightlylowerthanthatoftheli ture[19].Thisismostlikelyduetotwofactors:(i)thepackingheightofthestripperinthisworkwasshorterthanthatoftheworkofSakwattanapongetal.[19](0.50mand1.00m,respectively).Theshorterpackingheightledtolesscontacttimeandsurfaceareaforthemassandheattransfersinthestripperbetweenthefallingdownrichsolutionandtherisingvapor;()DixonringrandompackingwasusedinthisworkwhileDXstructuredpackingwasusedintheworkofSakwattanapongetal.[19].Randompackingcaneasilygeneratebridgingandcavitationphenomenawhichwilldecreasethedistributionsofgasandliquidphasesinthestripperandthendecreasethemassandheattransferperformance[5].However,eventhoughtheperformanceofDixonringpackingwasslightlylowerthanthatofDXstructuredpacking,themanufacturingcostoftherandompackingisrelativelylower.Consequently,randompackingisstillextensivelyusedinmanyindustries.Hence,theuseofDixonringpackinginthestripperinthisworkcouldprovideameaningfulinvestigationoftheregenerationperformanceofDETA.
Effectofsingleoperatingparametersontheregenerationheatduty
Inthepresentsection,QregofDETAwasdeterminedoverthesolventflowrate(L)rangeof2.9211.69m3/m2h(solventflowratewasmeasuredinrichCO2stream),concentration(C)rangeof1.04.0kmol/m3(DETAconcentrationwasmeasuredintherichCO2stream),andCO2cycliccapacity(Da,calculatedbasedonafixedrichloadingof1.40mol/mol)rangeof0.210.79mol/mol.ItshouldbenotedthattheinvestigatedCO2leanloadingsofaqueousDETAsolutioninthisworkwereintherangeof0.611.19mol/mol,whichweremuchhigherthanthatofMEAsolution(normallyintherangeof0.200.35mol/mol).ThisrangeforDETAwasselectedbasedontheconsiderationsof:(i)theequilibriumsolubilityofaqueousDETA(>1.40mol/mol)andthemasstransferperformanceofDETAbeingmuchhigherthanthoseofMEA[5,6],and()preventingexcessiveregenerationenergyconsumptioninthelowCO2loadingregion[19,28].Inaddition,theconcentrationsofDETA(1.04.0kmol/m3)usedwerealsolowerthanthatofMEA(5.0kmol/m3whichisacommonconcentrationusedforMEA).
Fig.2.Desorptionperformancecomparison(desorptionsolventisbothMEA,solventflowrate=6(m3/m2h);richCO2loading=0.50mol/mol;temperatureoftherichaminesolutionfeedtothestripper90°C).
kJ/kgCO2
8000
Regenerationheatduty
6000
4000
2000
0
1.0 2.0 3.0 4.0 5.0
DETAconcentrationkmol/m3
Fig.3.EffectofDETAconcentrationoftherichCO2solutionontheregenerationheatduty.
ThisisbecauseDETApossessesahigherabsorptioncapacity(>1.4mol/mol)thanMEAasmentionedearly,andtheviscosityofDETAsolutionishigherthanthatofMEA.Forexample,theviscosityofDETAandMEAat4.0kmol/m3are8.928and1.832mPa/s,respectively[29,30].ThehighviscosityofDETAsolutionatthehighconcentrationcancauselowmobilitythroughtheabsorberandstripperaswellasthepipes,leadingtopoormassandheattransferperformanceandhightransportcost.
TheeffectofDETAconcentrationontheregenerationheatdutyisshowninFig3.Thefigureshowsthatan reaseinDETAconcentrationresultsinadecreaseofQreg.ThisisbecausetheCO2partialpressureinthegasphase(orCO2concentrationintheliquidphase)andthedrivingformasstransfer reaseasDETAconcentration reasesresultinginareductioninQregforregeneration.However,itshouldbenotedthatthe reaseofamineconcentrationcouldleadtosomepotentialproblems,suchassolventdegradationandequipmentcorrosion[31,32].Also,highviscosityofDETAsolutionathighconcentrationscanleadtopoormassandheattransferperformance,aspreviouslymentioned.
Forthesereasons,theeffectofCO2cycliccapacity(Da)onQregwasstudiedonlyfortwoDETAconcentrationsof2.0and3.0kmol/m3.AsshowninFig.3,at1.0kmol/m3,Qregwashighwhileat
4.0kmol/m3,highsolutionviscosityisobserved.TheresultsfortheeffectofCO2cycliccapacity(Da)onQregforDETAconcentrationsof2.0and3.0kmol/m3areshowninFig.4.ThefigureshowsthatQreg reasesastheCO2cycliccapacity(Da) reases(orasthealeandecreases).Thisisbecausethe reaseofaleandirectlyaffectstheequilibriumpartialpressureofCO2andreducesthe
C=2kmol/m3;L=3.90m3/m2·h
C=3kmol/m3;L=2.92m3/m2·h
Regenerationheatduty(kJ/kgCO2)
8000 (LCDa,kmol/m2h).However,inmostindustrialnts,thetotalabsorptioncapacityandamountofcapturedCO2(kmol/h)areconstantbecauseofthefixedgasflowrateandcomposition
6000 offeedgas;aswell,theoutletconcentrationofCO2fromtheabsor
berisfixedertainlevel(61.0vol.%forexample).Therefore,itesessentialtoperformapreliminaryexplorationofthesyn
4000
2000
0
0.30 0.40 0.50 0.60 0.70
CO2cycliccapacity(mol/mol)
ergisticeffectsofL,C,andDaonQreg.Thesewerestudiedbyfixingoneparame taconstantvalueandvaryingtheratiooftheothertwoparametersinordertokeepthetotalabsorptioncapacityconstant.
Inordertoexam hesynergisticeffectofDaandLonQreg,thevaluesofCandLDawerefixedatcertainvalues.TheexperimentswereconductedoverDaintherangeof0.210.79mol/mol,Lintherangeof2.9211.69m3/m2h,andatCof2.0kmol/m3.ItcanbeseenfromFig.6thatQregdecreaseswhenDa reasesfrom
0.21to0.31mol/mol,but reasesasDa reasesfrom0.31to
Fig.4.EffectofCO2cycliccapacityofDETAsolutionontheregenerationheatduty.
drivingformasstransferinthesystem.ForahigherCO2cycliccapacityoralowerleanloadingoftheoutletDETAsolution,morewatervaporisrequiredtostripCO2.Thisresultsinasignific creaseofqvapandconsequently,Qreg.Itc sobeseenthatQregsharply reasesathighCO2cycliccapacity.Thisrevealsthatexcessiveenergiesareconsumedforregenerationshowingthatitmightnotbeeconomicaltooperatethesystemusingacycliccapacityhigherthan0.63mol/mol.ThesesamephenomenawerepreviouslyreportedbySakwattanapongetal.[19]andGalindoetal.[28]forMEAandDEAsolutions.
Theeffectofsolventflowrateonregenerationheatdutywasnotstraightforward,asshowninFig.5.Intheseexperiments,theCO2leanloadingsweresetat1.0mol/moland0.84mol/moltoprovidecycliccapacityof0.40mol/moland0.56mol/mol,respectively.Asseeninthefigure,Qregreducedwithsolventflowrateatthelowsolventflowratesbecausetheeffectiveinterfacialareainstriperwas reased[33],resultinginenhancementsofbothmassandheattransferperformance.Ontheotherhand,athighersolventflowrates,Qregwas reasedduetotheshorterresidencetimeofthesolventinthestrippercolumnandmoreheatbeingrequiredinthereboilertoachievethesameDa.
ThestudyoftheeffectofL,CandDaontheregenerationheatduty
byfixingthetotalabsorptioncapacityconstant
Ashasbeenshown,L,C,andDasignificantlyaffectQregandcandirectlychangethetotalabsorptioncapacityoftheprocess
0.79mol/mol.Thereasonsareasfollows:an reaseofDaledtoadecreaseofLinordertoobtainthesametotalabsorptioncapacity;theseresultedinalowerqsenaswellasQregrequiredforraisingthesolventtemperatureatlowCO2cycliccapacities.Ontheotherhand,atahigherCO2cycliccapacity,the reaseofQregistheresultofthe reaseofqvaprequiredforregenerationtoalowerleanloading,aspreviouslydescribed.ThisresultrevealsthatthesolventflowratehadagreaterimpactontheQregthanthecycliccapacityatlowcycliccapacities.Ontheotherhand,thesignificanceofsolventflowratewasloweratahighcycliccapacity.
Fig.7showsthesynergisticeffectofLandConQregwiththecycliccapacitybeingkeptconstantat0.50mol/mol.ItcanbefoundthatQregreasedcontinuouslywithanreaseofLfrom2.92to
11.69m3/m2horwithadecreaseofDETAconcentrationfrom4.0to1.0kmol/m3.The reaseofLdidnotreducetheQregatlowL,asshowninFig.5.Thisimpliesthatthe reaseofQregwasmostlikelyduetothedecreaseofDETAconcentrationorthefactthattheconcentrationofDETAexhibitedamoreimportantroleonQreg.Inaddition,itcanbefoundfromthecomparisonbetweenFigs.3and7thattheregenerationheatdutiesatthesameamineconcentrationwerealmostthesameevenwhentheLandDawerechanged.ThisalsorevealsthattheregenerationheatdutyofDETAisverysensitivetoDETAconcentration.
ThesynergisticeffectofCandDaontheQregwerealsoinvestigated.TheresultsareshowninFig.8.TheQregdecreasedcontinuouslyastheCwas reasedfrom2.0to4.0kmol/m3.Thisisbecausethereisan reaseofdriving formasstransferwithan reaseofDETAconcentration,asdescribedpreviously;also,adecreaseofleanloadingfromtheloweringofDareducesqvap,andconsequently,theQregofthesystem.
8000
a×L=2.40m3/m2·h;C=2.0kmol/m3
Regenerationheatduty(kJ/kgCO2)
8000
6000
Regenerationheatduty(kJ/kgCO2)
6000
4000
4000
2000
2000
0
3.0 6.0 9.0 12.0
Solventflowrate(m3/m2·h)
Fig.5.EffectofsolventflowrateoftherichCO2solutionontheregenerationheatduty.
0
0.2 0.4 0.6 0.8
CO2cycliccapacity(mol/mol)
Fig.6.ThesynergisticeffectofCO2cycliccapacityandsolventflowrateoftherichCO2solutionontheregenerationheatduty.
Vaporizationheat
Regenerationheatduty(kJ/kgCO2)
Regenerationheatduty(kJ/kgCO2)
8000 8000
L×C=11.5kmol/m2·h;a0.50mol/mol
6000 6000
4000 4000
2000 2000
0
3.0 6.0 9.0 12.0
Solventflowrate(m3/m2·h)
0
Case1(MEA) Case2(DETA)
Absorptionsolvent
Case3(DETA)
Fig.7.ThesynergisticeffectofDETAconcentrationandsolventflowrateoftherichCO2solutionontheregenerationheatduty.
DETAisanewaminewhichisscreenedforpossibleCO2absorptionapplication.Beforeitcanbeusedinthefield,alltheparameters,especiallytheoneswiththepossibilityofsynergies,shouldbeexploredextensively.Inthispaper,onlythepreliminaryexplorationoftheparametersisattemptedasseeninFigs.68,justtoprovidepreliminarytrends.Subsequentworkwillexploremoredeeplyintosomeofthemoreinterestingscenarios,suchasthesynergybetweenCO2cycliccapacity(Da)andamineflowrate(L).
ComparativeregenerationperformancesofDETAandMEA
Inthepresentwork,Qregaswellasitsthreecomponents(i.e.,qabs,qsen,qvap)ofDETAwerecomparedwiththoseofMEA(atitsoptimizedconditions).TheMEAconcentrationat5.0kmol/m3aswellasleanandrichCO2loadingsof0.25and0.50mol/mol,respectively,hasbeenconsideredtobetheoptimizedconditionforMEAbasedpostcombustionCO2captureprocess,andhasbeenusedasthebasecaseforcomparisonwithothersolventsinpilotnttestsandsimulationstudies[3437].Therefore,QregofMEAattheseconditionscanreasonablybeconsideredasabenchmarkforcomparisoninthiswork.Threecasesofoperations,
luding,case1ofMEA,andcases2and3ofDETA,withthesame
Fig.9.ComparativeregenerationperformancesofDETAandMEA(theconditionsofcases1–3were:case(1),Lof4.38(m3/m2h)&Cof5.0(kmol/m3)&Daof0.214(mol/mol);case(2),Lof3.90(m3/m2h)&Cof2.0(kmol/m3)&Daof0.59(mol/mol)andcase(3),Lof4.87(m3/m2h)&Cof2.0(kmol/m3)&Daof0.483(mol/mol)).
wer terthan
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 青铜器课程设计分析
- 精密数控滑台课程设计
- 第二中学计算机网络教室开放管理制度
- 河南省郑州市重点名校2025届物理高三上期末调研模拟试题含解析
- 华师大版初中科学1.3恒星的一生
- 华师大版初中科学植物的有性生殖和发育(2)(23课件)
- 健康管理与预防策略制度
- 2《燕子》核心素养分层学习任务单-2022-2023学年三年级语文下册新课标(部编版)
- 河南省许昌某中学2024-2025学年高二年级上册开学考试语文试题
- 算法设计与分析 课件 7.5-回溯法 - 典型应用 - 子集树实现 - 0-1背包问题
- JF-2023-合同中小学校校外供餐合同示范文本
- 内镜中心考试题及答案
- 如何培养学生的思辨能力
- 统计学职业生涯规划
- 为家长设计一份午餐食谱的步骤同课异构
- 冬枣植保知识培训课件
- 食堂人员操作规范培训课件
- 《股票入门》课件
- ADA糖尿病指南版医学幻灯片
- 《商业医疗保险》课件
- 武术与民族传统体育专业职业生涯规划书
评论
0/150
提交评论