![西藏自治区拉萨市城关区拉萨中学2022-2023学年数学高二第二学期期末达标检测模拟试题含解析_第1页](http://file4.renrendoc.com/view/e9503ac6e2529be298703b857ba11e7e/e9503ac6e2529be298703b857ba11e7e1.gif)
![西藏自治区拉萨市城关区拉萨中学2022-2023学年数学高二第二学期期末达标检测模拟试题含解析_第2页](http://file4.renrendoc.com/view/e9503ac6e2529be298703b857ba11e7e/e9503ac6e2529be298703b857ba11e7e2.gif)
![西藏自治区拉萨市城关区拉萨中学2022-2023学年数学高二第二学期期末达标检测模拟试题含解析_第3页](http://file4.renrendoc.com/view/e9503ac6e2529be298703b857ba11e7e/e9503ac6e2529be298703b857ba11e7e3.gif)
![西藏自治区拉萨市城关区拉萨中学2022-2023学年数学高二第二学期期末达标检测模拟试题含解析_第4页](http://file4.renrendoc.com/view/e9503ac6e2529be298703b857ba11e7e/e9503ac6e2529be298703b857ba11e7e4.gif)
![西藏自治区拉萨市城关区拉萨中学2022-2023学年数学高二第二学期期末达标检测模拟试题含解析_第5页](http://file4.renrendoc.com/view/e9503ac6e2529be298703b857ba11e7e/e9503ac6e2529be298703b857ba11e7e5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知某几何体的三视图如图所示,则该几何体的外接球的表面积为()A. B. C. D.2.某同学将收集到的6组数据对,制作成如图所示的散点图(各点旁的数据为该点坐标),并由这6组数据计算得到回归直线:和相关系数.现给出以下3个结论:①;②直线恰过点;③.其中正确结论的序号是()A.①② B.①③ C.②③ D.①②③3.小赵、小钱、小孙、小李到个景点旅游,每人只去一个景点,设事件“个人去的景点彼此互不相同”,事件“小赵独自去一个景点”,则()A. B. C. D.4.执行如图所示的程序框图,则输出的()A. B. C. D.5.下列函数中,即是奇函数,又在上单调递增的是A. B. C. D.6.若函数的定义域为R,则实数a的取值范围为()A. B.(0,1)C. D.(﹣1,0)7.如图,表示三个开关,设在某段时间内它们正常工作的概率分别是0.9、0.8、0.7,那么该系统正常工作的概率是().A.0.994 B.0.686 C.0.504 D.0.4968.已知,则的最小值为()A. B. C. D.9.已知函数(其中,)在区间上单调递减,则实数的取值范围是()A. B. C. D.10.若f(x)=ax2+bx+c(c≠0)是偶函数,则g(x)=ax3+bx2+cx()A.是奇函数 B.是偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数11.函数过原点的切线的斜率为()A. B.1 C. D.12.一个盒子里有7只好的晶体管、5只坏的晶体管,任取两次,每次取一只,每一次取后不放回,在第一次取到好的条件下,第二次也取到好的概率()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设当x=θ时,函数f(x)=2sinx+cosx取得最小值,则cos()=______.14.函数的定义域为_______________.15.设Sn为等比数列{an}的前n项和,8a2+a5=0,则=________.16.已知地球半径为,处于同一经度上的甲乙两地,甲地纬度为北纬75°,乙地纬度为北纬15°,则甲乙两地的球面距离是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)甲将要参加某决赛,赛前,,,四位同学对冠军得主进行竞猜,每人选择一名选手,已知,选择甲的概率均为,,选择甲的概率均为,且四人同时选择甲的概率为,四人均末选择甲的概率为.(1)求,的值;(2)设四位同学中选择甲的人数为,求的分布列和数学期望.18.(12分)已知x,y,z是正实数,且满足.(1)求的最小值;(2)求证:19.(12分)已知集合,集合是集合S的一个含有8个元素的子集.(1)当时,设,①写出方程的解();②若方程至少有三组不同的解,写出k的所有可能取值;(2)证明:对任意一个X,存在正整数k,使得方程至少有三组不同的解.20.(12分)设函数f(x)=|3﹣2x|+|2x﹣a|(1)当a=1时,求不等式f(x)≤3的解集;(2)若存在x∈R使得不等式f(x)≤t++2对任意t>0恒成立,求实数a的取值范围.21.(12分)如图,在直三棱柱中,平面侧面,且.(1)求证:;(2)若直线与平面所成角的大小为,求锐二面角的大小22.(10分)(衡水金卷2018年普通高等学校招生全国统一考试模拟试卷)如图,在三棱柱中,侧棱底面,且,是棱的中点,点在侧棱上运动.(1)当是棱的中点时,求证:平面;(2)当直线与平面所成的角的正切值为时,求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题设中提供的三视图中的图形信息与数据信息可知该几何体是一个底面是边长分别为3,3,4的等腰三角形,高是4的三棱锥,如图,将其拓展成三棱柱,由于底面三角形是等腰三角形,所以顶角的余弦为,则,底面三角形的外接圆的半径,则三棱锥的外接球的半径,其表面积,应选答案D。2、A【解析】
结合图像,计算,由求出,对选项中的命题判断正误即可得出结果.【详解】由图像可得,从左到右各点是上升排列的,变量具有正相关性,所以,①正确;由题中数据可得:,,所以回归直线过点,②正确;又,③错误.故选A【点睛】本题主要考查回归分析,以及变量间的相关性,熟记线性回归分析的基本思想即可,属于常考题型.3、D【解析】分析:这是求小赵独自去一个景点的前提下,4
个人去的景点不相同的概率,求出相应基本事件的个数,即可得出结论.详解:小赵独自去一个景点,则有3个景点可选,其余3人只能在小赵剩下的3个景点中选择,可能性为种
所以小赵独自去一个景点的可能性为种
因为4
个人去的景点不相同的可能性为种,
所以.
故选:D.点睛:本题考查条件概率,考查学生的计算能力,确定基本事件的个数是关键.4、B【解析】
模拟程序的运行过程,分析循环中各变量值的变化即可得到答案.【详解】由题意,输入值,,第一次执行,,,不成立;第二次执行,,,不成立;第三次执行,,,不成立;第四次执行,,,不成立;第五次执行,,,成立,输出.故选:B【点睛】本题主要考查循环框图的应用,按照框图的程序运行即可得出正确答案,属于基础题.5、B【解析】分析:对四个选项分别进行判断即可得到结果详解:对于,,,,不是奇函数,故错误对于,,,当时,,函数在上不单调,故错误对于,函数在上单调递减,故错误故选点睛:对函数的奇偶性作出判断可以用其定义法,单调性的判断可以根据函数的图像性质,或者利用导数来判断。6、A【解析】
首先由题意可得,再由对数式的运算性质变形,然后求解对数不等式得答案.【详解】由题意可得,第一个式子解得或;第二个式子化简为,令,则,解得或,则或,则或.即或.综上,实数的取值范围为.故选:A.【点睛】本题主要考查以函数定义域为背景的恒成立问题,二次型函数的恒成立问题一般借助判别式进行处理,本题同时兼顾考查了对数的运算性质,综合性较强,侧重考查数学运算的核心素养.7、B【解析】
由题中意思可知,当、元件至少有一个在工作,且元件在工作时,该系统正常公式,再利用独立事件的概率乘法公式可得出所求事件的概率.【详解】由题意可知,该系统正常工作时,、元件至少有一个在工作,且元件在元件,当、元件至少有一个在工作时,其概率为,由独立事件的概率乘法公式可知,该系统正常工作的概率为,故选B.【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,在处理至少等问题时,可利用对立事件的概率来计算,考查计算能力,属于中等题.8、C【解析】试题分析:由题意得,,所以,当时,的最小值为,故选C.考点:向量的运算及模的概念.9、D【解析】
分类讨论a的范围,根据真数的符号以及单调性,求出a的范围.【详解】解:函数y=loga(8﹣ax)(其中a>0,a≠1)在区间[1,4]上单调递减,当a>1时,由函数t=8﹣ax在区间[1,4]上单调递减且t>0,故8﹣4a>0,求得1<a<1.当0<a<1时,由函数t=8﹣ax在区间[1,4]上单调递减,可得函数y=loga(8﹣ax)在区间[1,4]上单调递增,这不符合条件.综上,实数a的取值范围为(1,1),故选:D.【点睛】本题主要考查复合函数的单调性,对数函数、一次函数的性质,属于中档题.10、A【解析】若f(x)=ax2+bx+c(c≠0)是偶函数,则,则是奇函数,选A.11、A【解析】分析:设切点坐标为(a,lna),求函数的导数,可得切线的斜率,切线的方程,代入(0,0),求切点坐标,切线的斜率.详解:设切点坐标为(a,lna),∵y=lnx,∴y′=,切线的斜率是,切线的方程为y﹣lna=(x﹣a),将(0,0)代入可得lna=1,∴a=e,∴切线的斜率是=故选:A.点睛:与导数几何意义有关问题的常见类型及解题策略①已知切点求切线方程.解决此类问题的步骤为:①求出函数在点处的导数,即曲线在点处切线的斜率;②由点斜式求得切线方程为.②已知斜率求切点.已知斜率,求切点,即解方程.③求切线倾斜角的取值范围.先求导数的范围,即确定切线斜率的范围,然后利用正切函数的单调性解决.12、C【解析】
第一次取到好的条件下,第二次即:6只好的晶体管、5只坏的晶体管中取到好的概率,计算得到答案.【详解】第一次取到好的条件下,第二次即:6只好的晶体管、5只坏的晶体管中取到好的概率故答案选C【点睛】本题考查了条件概率,将模型简化是解题的关键,也可以用条件概率公式计算.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用辅助角公式化简函数的解析式,再根据正弦函数的最值求出辅助角,再利用两角和的余弦公式求出的值.【详解】对于函数f(x)=2sinx+cosx=sin(x+α),其中,cosα=,sinα=,α为锐角.当x=θ时,函数取得最小值,∴sin(θ+α)=-,即sin(θ+α)=-1,∴cos(θ+α)=1.故可令θ+α=-,即θ=--α,故故答案为.【点睛】本题主要考查辅助角公式,正弦函数的最值,两角和的余弦公式,属于中档题.14、{x|x∈(2kπ﹣,2kπ+),k∈Z}【解析】分析:这里的cosx以它的值充当角,要使sin(cosx)>0转化成2kπ<cosx<2kπ+π,注意cosx自身的范围.详解:由sin(cosx)>0⇒2kπ<cosx<2kπ+π(k∈Z).又∵﹣1≤cosx≤1,∴0<cosx≤1;故所求定义域为{x|x∈(2kπ﹣,2kπ+),k∈Z}.故答案为:{x|x∈(2kπ﹣,2kπ+),k∈Z}.点睛:本题主要考查了函数的定义域及其求法及复合函数单调性的判断,求三角函数的定义域,要解三角不等式,常用的方法有二:一是图象,二是三角函数线.15、-11【解析】通过8a2+a5=0,设公比为q,将该式转化为8a2+a2q3=0,解得q=-2,所以===-11.16、【解析】
同一纬度的两地之间与球心共在一个大圆上,根据纬度差即可求得圆心角,进而求得两地间距离.【详解】由题意可知,同一纬度的两地之间与球心共在一个大圆上当甲地纬度为北纬75°,乙地纬度为北纬15°,则两地间所在的大圆圆心角为60°所以两地的球面距离为故答案为【点睛】本题考查了球的截面性质,大圆及球面距离的求法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)的分布列见解析;数学期望为2【解析】
(1)根据题意,利用相互独立事件概率计算公式列出关于的方程组,即可求解出答案.(2)根据题意先列出随机变量的所有可能取值,然后根据独立重复事件的概率计算公式得出各自的概率,列出分布列,最后根据数学期望的计算公式求解出结果.【详解】解:(1)由已知可得解得(2)可能的取值为0,1,2,3,4,,,,,.的分布列如下表:01234.【点睛】本题主要考查逆用相互独立事件概率计算公式求解概率问题以及离散型随机变量的分布列和期望的求解.18、(1)见解析(2)见解析【解析】分析:(1)利用“乘1法”,根据基本不等式可求的最小值;(2)由柯西不等式即可得证.详解:(1)∵x,y,z是正实数,且满足x+2y+3z=1,∴++=(x+2y+3z)=6++++++≥6+2+2+2,当且仅当=且=且=时取等号.(2)由柯西不等式可得1=(x+2y+3z)2≤(x2+y2+z2)(12+22+32)=14(x2+y2+z2),∴x2+y2+z2≥,当且仅当x==,即x=,y=,z=时取等号.故x2+y2+z2≥点睛:本题考查基本不等式及柯西不等式,属基础题.19、(1)①②4,6.(2)证明见详解.【解析】
(1)①根据两个元素之差为3,结合集合的元素,即可求得;②根据题意要求,写出集合X中从小到大8个数中所有的差值(限定为正数)的可能,计算每个差值出现的次数,即可求得;(2)采用反证法,假设不存在满足条件的k,根据差数的范围推出矛盾即可.【详解】(1)①方程的解有:.②以下规定两数的差均为正,则:列出集合X的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1;中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:6,9,8,9,6;中间相隔三数的两数差:10,11,11,10;中间相隔四数的两数差:12,14,12;中间相隔五数的两数差:15,15;中间相隔六数的两数差:16.这28个差数中,只有4出现3次、6出现4次,其余都不超过2次,所以k的可能取值有4,6.(2)证明:不妨设,记,,共13个差数.假设不存在满足条件的k,则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6,从而①又,这与①矛盾.故假设不成立,结论成立.即对任意一个X,存在正整数k,使得方程至少有三组不同的解.【点睛】本题考查集合新定义问题,涉及反证法的使用,本题的关键是要理解题意,小心计算,大胆求证.20、(1);(2)【解析】
(1)解法一:利用分类讨论法去掉绝对值,解对应的不等式即可;解法二:利用分段函数表示f(x),作出y=f(x)和直线y=3的图象,利用图象求出不等式的解集;(2)由题意可得f(x)的最小值不大于t2的最小值,利用绝对值不等式求出f(x)的最小值,利用基本不等式求出t2的最小值,再列不等式求得实数a的取值范围.【详解】(1)解法一:当a=1时,f(x)=|3﹣2x|+|2x﹣1|;当x时,不等式f(x)≤3可化为:﹣2x+1﹣2x+3≤3,解得x,此时x;当x时,不等式f(x)≤3可化为为:2x﹣1﹣2x+3≤3,此不等式恒成立,此时得x;当x时,不等式f(x)≤3可化为:2x﹣1+2x﹣3≤3,解得得x,此时x,综上知,x,即不等式的解集为[,];解法二:利用分段函数表示f(x);作出y=f(x)和直线y=3的图象,如图所示:由f(x)=3解得:x或x,由图象可得不等式的解集为[,];(2)由f(x)=|3﹣2x|+|2x﹣a|≥|3﹣2x+2x﹣a|=|3﹣a|=|a﹣3|,即f(x)的最小值为|a﹣3|,由t2≥22=6,当且仅当t,即t=2时,取等号,因为存在x∈R,使得不等式f(x)≤t2对任意t>0恒成立,所以|a﹣3|≤6,解得﹣3≤a≤1;所以实数a的取值范围是﹣3≤a≤1.【点睛】本题考查了含有绝对值的不等式的解法与应用问题,也考查了不等式恒成立问题,是中档题.21、(1)详见解析;(2).【解析】
(1)本题首先可以取的中点并连接,然
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年种植施肥机械合作协议书
- 2025年非热杀菌先进设备合作协议书
- 2025年产品来料加工协议(三篇)
- 2025年个人投资理财委托协议简单版(2篇)
- 2025年二灰拌合场地租赁协议范文(2篇)
- 2025年产品外观专用协议标准版本(2篇)
- 咖啡馆改造协议
- 京城高端定制店装修合同
- 攀岩馆装修合作协议
- 消防用水紧急供应合同
- 医院消防安全培训课件
- 质保管理制度
- 《00541语言学概论》自考复习题库(含答案)
- 2025年机关工会个人工作计划
- 2024年全国卷新课标1高考英语试题及答案
- 华为经营管理-华为激励机制(6版)
- 江苏省南京市、盐城市2023-2024学年高三上学期期末调研测试+英语+ 含答案
- 2024护理不良事件分析
- 光伏项目的投资估算设计概算以及财务评价介绍
- 2024新版《药品管理法》培训课件
- (精心整理)一元一次不等式组100道计算题
评论
0/150
提交评论