相似三角形的性质_第1页
相似三角形的性质_第2页
相似三角形的性质_第3页
相似三角形的性质_第4页
相似三角形的性质_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

相似三角形的对应边成比例、对应角相等。

回顾与反思☞第四章图形的相似第7节相似三角形的性质(一)B’B相似比k=

探究活动一:△ABC与

△A′B′C′相似吗△ABC∽△A′B′C′相似比k=

1:21:2B’探究活动一:△ABC∽△A′B′C′相似比k=1:2

1:2B’探究活动一:探究活动一:ABCDEA/B/C/D/E/FF‘如图:已知△ABC∽△A′B′C′,相似比为k,AD平分∠BAC,A’D’平分∠B’A’C’;E、E’分别为BC、B’C’的中AF⊥BC,A’F’⊥B’C’.试探究的值。探究活动一:相似三角形性质定理:相似三角形对应高的比,对应角平分线的比,对应中线的比都等于相似比。∵△ABC∽△A′B′C′∴ABCDEA/B/C/D/E/FF‘探究活动一:变式拓展探究:如果把角平分线、中线变为对应角的三等分线、四等分线、…n等分线,对应边的三等分线、四等分线、…n等分线,那么它们也具有特殊关系吗?探究活动二:类比探究相似三角形对应中线的比、对应角平分线的比

1、在生活中,我们经常利用相似的知识解决建筑类问题.如图,小王依据图纸上的△ABC,以1:2的比例建造了模型房梁△A’B’C’,CD和C’D’分别是它们的立柱。三:学以致用(1)试写出△ABC与△A’B’C’的对应边之间的关系,对应角之间的关系。(2)△ACD与△A’C’D’相似吗?为什么?如果相似,指出它们的相似比。三:学以致用(3)如果CD=1.5cm,那么模型房的房梁立柱有多高?三:学以致用三:学以致用2、(3)你能得到哪些结论?相似三角形对应角的n等分线的比,对应边的n等分线的比都等于相似比。三:学以致用三:学以致用三:学以致用三:学以致用ABCSREPDQ(1)∵四边形PQRS是正方形∴RS∥BC∴

∠ASR=∠B,∠ARS=∠C∴

△ASR∽△ABC.(两角分别相等的两个三角形相似)ABCSREPDQ三:学以致用(2)∵△ASR∽△ABC.∴设正方形PQRS的边长为xcm,则AE=(40-x)cm,解得,x=24.所以正方形PQRS的边长为24cm.(相似三角形对应高的比等于相似比)ABCSREPDQ三:学以致用三:学以致用练习:(课本95页随堂练习2)两个相似三角形中一组对应角平分线的长分别是2cm和5cm,求这两个三角形的相似比。在这两个三角形的一组对应中线中,如果较短的中线是3cm,那么较长的中线多长?

同学们:经历了这节课的探索学习,你在知识上和方法上什么收获呢?请说说看。相似三角形的性质:

相似三角形对应高的比,对应角平分线的比,对应中线的比都等于相似比。

四:课堂小结☞结束寄语课

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论