版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在4次独立重复试验中,事件A发生的概率相同,若事件A至少发生1次的概率为,则事件A在一次试验中发生的概率为A. B. C. D.2.在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的参数方程为(为参数,).若与有且只有一个公共点,则实数的取值范围是()A. B. C. D.或3.从装有除颜色外完全相同的个白球和个黑球的布袋中随机摸取一球,有放回地摸取次,设摸得黑球的个数为,已知,则等于()A. B. C. D.4.已知函数是(-∞,+∞)上的减函数,则a的取值范围是A.(0,3) B.(0,3] C.(0,2) D.(0,2]5.已知函数满足,函数.若函数与的图象共有个交点,记作,则的值为A. B. C. D.6.在的展开式中,的系数为()A.-10 B.20 C.-40 D.507.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为A.48 B.72 C.90 D.968.执行如图所示的程序框图,若输入的值为,则输出的值为()A. B. C. D.9.某单位为了解用电量(度)与气温(℃)之间的关系,随机统计了某天的用电量与当天气温,并制作了统计表:由表中数据得到线性回归方程,那么表中的值为()气温(℃)181310-1用电量(度)243464A. B. C. D.10.已知命题p:∃x∈R,x2-x+1≥1.命题q:若a2<b2,则a<b,下列命题为真命题的是()A. B. C. D.11.双曲线经过点,且离心率为3,则它的虚轴长是()A. B. C.2 D.412.若某几何体的三视图如图所示,则此几何体的体积等于()A.24 B.30 C.10 D.60二、填空题:本题共4小题,每小题5分,共20分。13.已知等比数列的前项和,若,,则__________.14.某城市街区如下图所示,其中实线表示马路,如果只能在马路上行走,则从点到点的最短路径的走法有___种.15.设,若随机变量的分布列是:则当变化时,的极大值是______.16.已知函数,则函数的最大值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)“中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用,出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段:,,,,,后得到如图所示的频率分布直方图.问:(1)估计在40名读书者中年龄分布在的人数;(2)求40名读书者年龄的平均数和中位数;(3)若从年龄在的读书者中任取2名,求这两名读书者年龄在的人数的分布列及数学期望.18.(12分)设是数列{}的前项和,,且.(I)求数列{}的通项公式;(Ⅱ)设,求.19.(12分)已知函数的图象关于原点对称.(Ⅰ)求,的值;(Ⅱ)若函数在内存在零点,求实数的取值范围.20.(12分)设正整数,集合,是集合P的3个非空子集,记为所有满足:的有序集合对(A,B,C)的个数.(1)求;(2)求.21.(12分)已知函数的定义域为.(1)求实数的取值范围;(2)设实数为的最大值,若实数满足,求的最小值.22.(10分)已知函数(1)讨论的极值;(2)当时,记在区间的最大值为M,最小值为m,求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:可从事件的反面考虑,即事件A不发生的概率为,由此可易得结论.详解:设事件A在一次试验中发生的概率为,则,解得.故选A.点睛:在求“至少”、“至多”等事件的概率时,通常从事件的反而入手可能较简单,如本题中“至少发生1次”的反面为“一次都不发生”,若本题求“至多发生3次”的概率,其反面是“至少发生4次”即“全发生”.2、D【解析】
先把曲线,的极坐标方程和参数方程转化为直角坐标方程和一般方程,若与有且只有一个公共点可转化为直线和半圆有一个公共点,数形结合讨论a的范围即得解.【详解】因为曲线的极坐标方程为即故曲线的直角坐标方程为:.消去参数可得曲线的一般方程为:,由于,故如图所示,若与有且只有一个公共点,直线与半圆相切,或者截距当直线与半圆相切时由于为上半圆,故综上:实数的取值范围是或故选:D【点睛】本题考查了极坐标、参数方程与直角坐标方程、一般方程的互化,以及直线和圆的位置关系,考查了学生数形结合,数学运算的能力,属于中档题.3、C【解析】
根据二项分布的数学期望计算,即可得出答案。【详解】根据题意可得出,即所以故选C【点睛】本题考查二项分布,属于基础题。4、D【解析】
由为上的减函数,根据和时,均单调递减,且,即可求解.【详解】因为函数为上的减函数,所以当时,递减,即,当时,递减,即,且,解得,综上可知实数的取值范围是,故选D.【点睛】本题主要靠考查了分段函数的单调性及其应用,其中熟练掌握分段的基本性质,列出相应的不等式关系式是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5、A【解析】分析:根据题意求解,的对称中心点坐标的关系,即两个图象的交点的关系,即可解得答案详解:函数满足,即函数关于点对称函数即函数关于点对称函数与的图象共有个交点即在两边各有个交点,则共有组,故,故选点睛:本题结合函数的对称性考查了函数交点问题,在解答此类题目时先通过化简求得函数的对称中心,再由交点个数结合图像左右各一半,然后求和,本题有一定难度,解题方法需要掌握。6、C【解析】分析:根据二项式展开式的通项求的系数.详解:由题得的展开式的通项为令5-r=2,则r=3,所以的系数为故答案为:C.点睛:(1)本题主要考查二项式展开式的系数的求法,意在考查学生对该基础知识的掌握水平和基本计算能力.(2)二项式通项公式:().7、D【解析】因甲不参加生物竞赛,则安排甲参加另外3场比赛或甲学生不参加任何比赛①当甲参加另外3场比赛时,共有•=72种选择方案;②当甲学生不参加任何比赛时,共有=24种选择方案.综上所述,所有参赛方案有72+24=96种故答案为:96点睛:本题以选择学生参加比赛为载体,考查了分类计数原理、排列数与组合数公式等知识,属于基础题.8、C【解析】
读懂流程图,可知每循环一次,的值减少4,当时,得到的值.【详解】根据流程图,可知每循环一次,的值减少4,输入,因为2019除以4余3,经过多次循环后,再经过一次循环后满足的条件,输出【点睛】流程图的简单问题,找到循环规律,得到的值,得到输出值.属于简单题.9、C【解析】
由表中数据计算可得样本中心点,根据回归方程经过样本中心点,代入即可求得的值.【详解】由表格可知,,根据回归直线经过样本中心点,代入回归方程可得,解得,故选:C.【点睛】本题考查了线性回归方程的简单应用,由回归方程求数据中的参数,属于基础题.10、B【解析】
先判定命题的真假,再结合复合命题的判定方法进行判定.【详解】命题p:∃x=1∈R,使x2-x+1≥1成立.故命题p为真命题;当a=1,b=-2时,a2<b2成立,但a<b不成立,故命题q为假命题,故命题p∧q,¬p∧q,¬p∧¬q均为假命题;命题p∧¬q为真命题,故选:B.【点睛】本题以命题的真假判断与应用为载体,考查了复合命题,特称命题,不等式与不等关系,难度中档.11、A【解析】
根据双曲线经过的点和离心率,结合列方程组,解方程组求得的值,进而求得虚轴长.【详解】将点代入双曲线方程及离心率为得,解得,故虚轴长,故本小题选A.【点睛】本小题主要考查双曲线的离心率,考查双曲线的几何性质,考查方程的思想,属于基础题.解题过程中要注意:虚轴长是而不是.12、A【解析】
根据几何体的三视图得出该几何体是三棱柱去掉一个三棱锥所得的几何体,结合三视图的数据,求出它的体积.【详解】根据几何体的三视图,得该几何体是三棱柱截去一个三棱锥后所剩几何体几何体是底面为边长为3,4,5的三角形,高为5的三棱柱被平面截得的,如图所示:由题意:原三棱柱体积为:V截掉的三棱锥体积为:V所以该几何体的体积为:V=本题正确选项:A【点睛】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.二、填空题:本题共4小题,每小题5分,共20分。13、8【解析】
利用求解.【详解】,则.故答案为:8【点睛】本题主要考查等比数列的性质,意在考查学生对该知识的理解掌握水平,属于基础题.14、7.【解析】分析:根据题意,从A到B的最短路程,只能向左、向下运动,将原问题转化为排列、组合问题,注意图中有空格,注意排除,计算可得答案.详解:根据题意,从A到B的最短路程,只能向左、向下运动;
从A到B,最短的路程需要向下走2次,向右走3次,即从5次中任取2次向下,剩下3次向右,有种情况,但图中有空格,故是方法数为中
故答案为:7.点睛:本题考查排列、组合的应用,解题的关键将圆问题转化为排列、组合问题,由分步计数原理计算得到答案.15、【解析】分析:先求出,再求,利用二次函数的图像求的极大值.详解:由题得,所以所以当时,的极大值是.故答案为:.点睛:(1)本题主要考查离散型随机变量的方差的计算,意在考查学生对这些知识的掌握水平和基本的计算能力.(2)对于离散型随机变量,如果它所有可能取的值是,,…,,…,且取这些值的概率分别是,,…,,那么=++…+16、0【解析】
求出函数的导函数,然后利用导数的性质求出函数的最大值.【详解】解:由,得,因为,所以,所以在上单调递减,所以的最大值为故答案:0【点睛】此题考查函数在闭区间上的最大值的求法,考查导数性质等基础知识,考查运算求解能力和思维能力,考查函数与方程思想,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)30;(2)54,55;(3)的分布列如下:012数学期望【解析】试题分析:(1)由频率分布直方图知年龄在[40,70)的频率为(0.020+0.030+0.025)×10,进而得出40
名读书者中年龄分布在[40,70)的人数.(2)40
名读书者年龄的平均数为25×0.05+35×0.1+45×0.2+55×0.3+65×0.25+75×0.1.计算频率为处所对应的数据即可得出中位数.(3)年龄在[20,30)的读书者有2人,年龄在[30,40)的读书者有4人,所以X的所有可能取值是0,1,2.利用超几何分布列计算公式即可得出.试题解析:(1)由频率分布直方图知年龄在的频率为,所以40名读书者中年龄分布在的人数为.(2)40名读书者年龄的平均数为.设中位数为,则解得,即40名读书者年龄的中位数为55.(3)年龄在的读书者有人,年龄在的读书者有人,所以的所有可能取值是0,1,2,,,,的分布列如下:012数学期望.18、(Ⅰ)an=2n.(Ⅱ)【解析】
(Ⅰ)利用数列递推关系即可得出.(Ⅱ)利用裂项求和即可求解.【详解】∵4Sn=an(an+2),①当n=1时得,即a1=2,当n≥2时有4Sn﹣1=an﹣1(an﹣1+2)②由①﹣②得,即2(an+an﹣1)=(an+an﹣1)(an﹣an﹣1),又∵an>0,∴an﹣an﹣1=2,∴an=2+2(n﹣1)=2n.(Ⅱ)∵,∴Tn=b1+b2+…+bn【点睛】本题考查了数列递推关系、裂项求和、数列的单调性,考查了推理能力与计算能力,属于中档题.19、(1),;(2)【解析】试题分析:(Ⅰ)题意说明函数是奇函数,因此有恒成立,由恒等式知识可得关于的方程组,从而可解得;(Ⅱ)把函数化简得,这样问题转化为方程在内有解,也即在内有解,只要作为函数,求出函数的值域即得.试题解析:(Ⅰ)函数的图象关于原点对称,所以,所以,所以,即,所以,解得,;(Ⅱ)由,由题设知在内有解,即方程在内有解.在内递增,得.所以当时,函数在内存在零点.20、(1),(2)【解析】
(1)通过分析,,分别讨论可得到;(2)通过分析A共有种不同情形,集合B共有种不同情形,集合C随集合B确定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生活在安全感满满的国家
- 月饼代工合同范本
- 买卖合同范本
- 理财合同范本
- 《拓展训练对销售员工职业倦怠影响的研究》
- 家具 加盟合同范本
- 《促进农村4~5岁学龄前儿童粗大动作发展的实验研究》
- 《生育惩罚背景下互联网行业女性职业自救研究》
- 《平衡计分卡在我国企业绩效管理中的应用研究》
- 《双向FDI对我国产业结构优化升级的影响研究》
- 井底的四只小青蛙
- FZ/T 52021-2012牛奶蛋白改性聚丙烯腈短纤维
- 运动控制系统-上海大学-全部章节内容
- 打“两卡”共同防范电信网络诈骗 课件 - 高中安全主题班会
- 公司组织结构图Word模板
- 云上智农APP推广使用课件-参考
- 机器人-abb操作手册简易
- 菜品出品质量管理规定(3篇)
- 医疗质量管理与持续改进记录表
- 最新《辅酶q10》课件
- 二 年级上册美术课件-《雪花飘飘》|北京课改版 (共25张PPT)
评论
0/150
提交评论