版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平行线的性质与判定的综合运用平行线的性质与判定的综合运用两直线平行{1.同位角相等2.内错角相等3.同旁内角互补性质判定1.由_________得到___________的结论是平行线的判定;请注意:2.由____________得到______________的结论是平行线的性质.用途:用途:角的关系两直线平行说明直线平行两直线平行
角相等或互补说明角相等或互补两直线平行{1.同位角相等2.内错角相等3.同旁内角互补性质例1:如图所示:AD∥BC,∠A=∠C,试说明AB∥DC.AEDFBC解:∵AD//BC(已知)∴∠A=∠ABF(两直线平行,内错角相等)又∵∠A=∠C(已知)∴∠ABF=∠C(等量代换)∴AB∥DC(同位角相等,两直线平行)例1:如图所示:AD∥BC,∠A=∠C,试说明AB∥DC.A思考1:如图所示:AD∥BC,∠A=∠C,试说明AB∥DC.AD∥BC.AB∥DC,解:∵AB//DC(已知)∴∠C=∠ABF(两直线平行,同位角相等)又∵∠A=∠C(已知)∴∠ABF=∠A(等量代换)∴AD∥BC(内错角相等,两直线平行)AEDFBC思考1:如图所示:AD∥BC,∠A=∠C,AD∥BC.AB∥解:∴∠2=∠3(等量代换)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代换)∴DF∥AC(内错角相等,两直线平行)思考2:如图,点E为DF上的点,点B为AC上的点,∠1=∠2,∠C=∠D,求证:DF∥AC321DEFABC∵∠1=∠2(已知)∠1=∠3(对顶角相等)∴BD∥CE(同位角相等,两直线平行)∴∠C=∠ABD(两直线平行,同位角相等)解:∴∠2=∠3(等量代换)又∵∠C=∠D(已知)∴∠解:∴∠2=∠3(等量代换)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代换)∴DF∥AC(内错角相等,两直线平行)思考3:如图,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,试问:∠A与∠F相等吗?请说出你的理由。321DEFABC∵∠1=∠2(已知)∠1=∠3(对顶角相等)∴BD∥CE(同位角相等,两直线平行)∴∠C=∠ABD(两直线平行,同位角相等)∴∠A=∠F(两直线平行,内错角相等)解:∴∠2=∠3(等量代换)又∵∠C=∠D(已知)∴∠解:又∵∠C=∠D(已知)∴∠D=∠ABD(两直线平行,内错角相等)∴BD∥CE(同位角相等,两直线平行)思考4:如图,已知∠A=∠F,∠C=∠D,求证:BD//CE.321DEFABC∴∠C=∠ABD(等量代换)∵∠A=∠F(已知)∴DF∥AC(内错角相等,两直线平行)解:又∵∠C=∠D(已知)∴∠D=∠ABD∴BD∥C例2:如图所示,已知:AE平分∠BAC,CE平分∠ACD,且AB∥CD.求证:∠1+∠2=90°.12ABCDEE例2:如图所示,已知:AE平分∠BAC,CE平分∠ACD,且思考一:
已知AB∥CD,GM,HM分别平分∠FGB,∠EHD,试判断GM与HM是否垂直?MGHFEDCBA思考一:已知AB∥CD,GM,HM分别平分∠FGB,∠EMGHFEDCBA思考2:若已知GM,HM分别平分∠FGB,∠EHD,GM⊥HM,试判断AB与CD是否平行?MGHFEDCBA思考2:若已知GM,HM分别平分∠FG思考3
:已知AB∥CD,GP,HQ分别平分∠EGB,∠EHD,判断GP与HQ是否平行?BACDFEHGPQ思考3:已知AB∥CD,GP,HQ分别平分∠EGB,∠E思考4:已知AB∥CD,GP,HQ分别平分∠AGF,∠EHD,判断GP与HQ是否平行?BACDFEHGPQ思考4:已知AB∥CD,GP,HQ分别平分∠AGF,∠EH思考5:已知,如图,BE平分∠ABD,DE平分∠BDC,DG平分∠CDF,
求证:1)ABCD
2)BEDG
3)EDGD
∠1+∠2=90°132465EABCGFD思考5:已知,如图,BE平分∠ABD,DE平分∠BDC,D解:∴∠BAD=∠ADC(两直线平行,内错角相等)又∵∠1=∠2(已知)∴∠E=∠F(两直线平行,内错角相等)∵AB∥CD(已知)∴AF∥DE(内错角相等,两直线平行)∴∠3=∠4(等式的性质)例3:如图,已知AB∥CD,
∠1=∠2,求证∠E=∠F.F1EDBA2C)(34解:∴∠BAD=∠ADC又∵∠1=∠2(已知)∴∠E=思考1:如图,已知∠E=∠F,
∠1=∠2,求证AB∥CD.F1EDBA2C)(34思考1:如图,已知∠E=∠F,∠1=∠2,F1EDBA2C思考2:如图,已知AB∥CD,
∠E=∠F,求证∠1=∠2.F1EDBA2C)(34思考2:如图,已知AB∥CD,∠E=∠F,F1EDBA2C思考3:如图,已知AB∥CD,AF∥DE,
求证∠1=∠2.F1EDBA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《文献管理解决方案》课件
- 《线路运行和维护》课件
- 定龙水库2024年度垂钓经营权合同3篇
- 区块链技术研发与应用合同(04版)
- 运输挂靠协议合同范本 2篇
- 文化艺术品展览居间合同
- 小学语文教师个人工作计划
- 幼儿园司机合同(2篇)
- 2024年度学校教学楼钢管架搭建合同
- 南京市2024年度标准房屋租赁合同(示范文本)
- 人美版小学美术六年级上册第三课《添画人像》单元作业设计
- 过程审核程序
- 高中劳动教育-主题班会课件
- 小学主题班会教学设计 《学会说声对不起》通用版
- 苏科版初中初一数学上册《有理数》评课稿
- 连铸设备操作维护规程检修规程
- 元素周期表英文版含音标
- 危急值报告制度有效性评估(PDCA)记录单
- 纪检监察组织监督招标管理工作实施办法
- 2023春国开现代教育管理专题形考任务1-4试题及答案
- 五年级科学期中考试质量分析
评论
0/150
提交评论