版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A. B. C. D.2.已知,则除以9所得的余数是A.2 B.3C.5 D.73.已知函数,若方程有三个实数根,且,则的取值范围为()A. B.C. D.4.如图,在平行四边形ABCD中,E为DC边的中点,且,则()A. B. C. D.5.已知复数满足方程,复数的实部与虚部和为,则实数()A. B. C. D.6.在复平面内,复数(是虚数单位)对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.从5种主料中选2种,8种辅料中选3种来烹饪一道菜,烹饪方式有5种,那么最多可以烹饪出不同的菜的种数为A.18 B.200 C.2800 D.336008.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法总数是A.210B.336C.84D.3439.若,,满足,,.则()A. B. C. D.10.已知函数的零点为,函数的零点为,则下列不等式中成立的是()A. B.C. D.11.已知是两条不同的直线,是两个不同的平面,则下列命题正确的是A.,则B.,则C.,则D.,则12.的展开式中,的系数为()A.15 B.-15 C.60 D.-60二、填空题:本题共4小题,每小题5分,共20分。13.若对于任意实数x,都有,则的值为_________.14.已知直线l的普通方程为x+y+1=0,点P是曲线上的任意一点,则点P到直线l的距离的最大值为______.15.的展开式中,的系数为__________.(用数字作答)16.一个袋子中装有8个球,其中2个红球,6个黑球,若从袋中拿出两个球,记下颜色,则两个球中至少有一个是红球的概率是________(用数字表示)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)一辆汽车前往目的地需要经过个有红绿灯的路口.汽车在每个路口遇到绿灯的概率为(可以正常通过),遇到红灯的概率为(必须停车).假设汽车只有遇到红灯或到达目的地才停止前进,用随机变量表示前往目的地途中遇到红灯数和绿灯数之差的绝对值.(1)求汽车在第个路口首次停车的概率;(2)求的概率分布和数学期望.18.(12分)如图,已知长方形中,,,为的中点.将沿折起,使得平面⊥平面.(I)求证:;(II)若点是线段上的一动点,当二面角的余弦值为时,求线段的长.19.(12分)如图,圆锥的展开侧面图是一个半圆,、是底面圆的两条互相垂直的直径,为母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点、为对称轴的抛物线的一部分.(1)证明:圆锥的母线与底面所成的角为;(2)若圆锥的侧面积为,求抛物线焦点到准线的距离.20.(12分)已知函数.(1)求函数的最小值;(2)当时,记函数的所有单调递增区间的长度为,所有单调递减区间的长度为,证明:.(注:区间长度指该区间在轴上所占位置的长度,与区间的开闭无关.)21.(12分)在数列an中,a(1)求a2(2)猜想an22.(10分)如图,已知正方形ABCD和矩形ACEF中,AB=,CE=1,CE⊥平面ABCD.(1)求异面直线DF与BE所成角的余弦值;(2)求二面角A-DF-B的大小.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分析:根据公式,可直接计算得详解:,故选D.点睛:复数题是每年高考的必考内容,一般以选择或填空形式出现,属简单得分题,高考中复数主要考查的内容有:复数的分类、复数的几何意义、共轭复数,复数的模及复数的乘除运算,在解决此类问题时,注意避免忽略中的负号导致出错.2、D【解析】
根据组合数的性质,将化简为,再展开即可得出结果.【详解】,所以除以9的余数为1.选D.【点睛】本题考查组合数的性质,考查二项式定理的应用,属于基础题.3、B【解析】
先将方程有三个实数根,转化为与的图象交点问题,得到的范围,再用表示,令,利用导数法求的取值范围即可.【详解】已知函数,其图象如图所示:因为方程有三个实数根,所以,令,得,令,所以,所以,令,所以,令,得,当时,,当时,,所以当时,取得极小值.又,所以的取值范围是:.即的取值范围为.故选:B【点睛】本题主要考查函数与方程,导数与函数的单调性、极值最值,还考查了数形结合的思想和运算求解的能力,属于难题.4、A【解析】
利用向量的线性运算可得的表示形式.【详解】,故选:A.【点睛】本题考查向量的线性运算,用基底向量表示其余向量时,要注意围绕基底向量来实现向量的转化,本题属于容易题.5、D【解析】分析:由复数的运算,化简得到z,由实部与虚部的和为1,可求得的值.详解:因为所以因为复数的实部与虚部和为即所以所以选D点睛:本题考查了复数的基本运算和概念,考查了计算能力,是基础题.6、B【解析】,复数对应点为:.点在第二象限,所以B选项是正确的.7、C【解析】
根据组合定义以及分布计数原理列式求解.【详解】从5种主料中选2种,有种方法,从8种辅料中选3种,有种方法,根据分布计数原理得烹饪出不同的菜的种数为,选C.【点睛】求解排列、组合问题常用的解题方法:分布计数原理与分类计数原理,具体问题可使用对应方法:如(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.8、B【解析】
由题意知本题需要分组解决,共有两种情况,对于7个台阶上每一个只站一人,若有一个台阶有2人另一个是1人,根据分类计数原理得到结果.【详解】由题意知本题需要分组解决,∵对于7个台阶上每一个只站一人有A73种;若有一个台阶有2人另一个是1人共有C31A72种,∴根据分类计数原理知共有不同的站法种数是A73+C31A72=336种.故答案为:B.【点睛】分类要做到不重不漏,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.分步要做到步骤完整﹣﹣完成了所有步骤,恰好完成任务.9、A【解析】
利用指数函数和对数函数的单调性即可比较大小.【详解】,,,,,,,,,故选:A.【点睛】本题考查了指数函数和对数函数的单调性,考查了计算能力和推理能力,属于基础题.10、C【解析】
根据零点存在性定理,可得,然后比较大小,利用函数的单调性,可得结果.【详解】由题意可知函数在上单调递增,,,∴函数的零点,又函数的零点,,故选:C【点睛】本题考查零点存在性定理以及利用函数的单调性比较式子大小,难点在于判断的范围,属基础题.11、D【解析】
根据空间中直线与平面的位置关系的相关定理依次判断各个选项即可.【详解】两平行平面内的直线的位置关系为:平行或异面,可知错误;且,此时或,可知错误;,,,此时或,可知错误;两平行线中一条垂直于一个平面,则另一条必垂直于该平面,正确.本题正确选项:【点睛】本题考查空间中直线与平面、平面与平面位置关系的判定,考查学生对于定理的掌握程度,属于基础题.12、C【解析】试题分析:依题意有,故系数为.考点:二项式.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据题意,分析可得,求出其展开式,可得为其展开式中含项的系数,由二项式定理求出项,分析可得答案.【详解】解:根据题意,,其展开式的通项为,又由,则为其展开式中含项的系数,令可得:;即;故答案为:.【点睛】本题考查二项式定理的应用,注意二项式定理的形式,属于基础题.14、【解析】
根据曲线的参数方程,设,再由点到直线的距离以及三角函数的性质,即可求解.【详解】由题意,设,则到直线的距离,故答案为.【点睛】本题主要考查了曲线的参数方程的应用,其中解答中根据曲线的参数方程设出点的坐标,利用点到直线的距离公式和三角函数的性质求解是解答的关键,着重考查了推理与运算能力,属于基础题.15、1【解析】
写出二项展开式的通项公式,令的指数为2,可求得项是第几项,从而求得系数.【详解】展开式通项为,令,则,∴的系数为.故答案为1.【点睛】本题考查二项式定理,考查二项展开式通项公式.解题时二项展开式的通项公式,然后令的指数为所求项的指数,从而可求得,得出结论.16、【解析】
根据题意,袋中有2个红球和6个黑球,由组合数公式可得从中取出2个的情况数目,若两个球中至少有一个是红球,即一红一黑,或者两红,由分步计数原理可得其情况数目,由等可能事件的概率,计算可得答案.【详解】解:根据题意,袋中有2个红球和6个黑球,共8个球,
从中取出2个,有种情况,
两个球中至少有一个是红球,即一红一黑,或者两红的情况有种,
则两个球中至少有一个是红球的概率为,
故答案为:.【点睛】本题考查等可能事件的概率的计算,是简单题,关键在于正确应用排列、组合公式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)分布列见解析,数学期望.【解析】
(1)汽车在第3个路口首次停车是指汽车在前两个路口都遇到绿灯,在第3个路口遇到绿灯,由此利用相互独立事件概率乘法公式能求出汽车在第3个路口首次停车的概率.(2)设前往目的地途中遇到绿灯数为,则,用随机变量表示前往目的地途中遇到红灯数和绿灯数之差的绝对值.的可能取值为0,2,4,,,,由此能求出的概率分布列和数学期望.【详解】解:(1)由题意知汽车在前两个路口都遇到绿灯,在第3个路口遇到绿灯,汽车在第3个路口首次停车的概率为:.(2)设前往目的地途中遇到绿灯数为,则,用随机变量表示前往目的地途中遇到红灯数和绿灯数之差的绝对值.则的可能取值为0,2,4,则,,,,的概率分布列为:024数学期望.【点睛】本题考查概率的求法,考查离散型随机变量的分布列、数学期望的求法,考查相互独立事件概率乘法公式、二项分布的性质等基础知识,考查运算求解能力.18、(1)见解析(2)【解析】
(I)推导出AM⊥BM,从而BM⊥平面ADM,由此能证明AD⊥BM.(II)以O为原点,OA为x轴,在平面ABCD内过O作OA的垂线为y轴,OD为z轴,建立空间直角坐标系,利用向量法能求出线段DE的长.【详解】(I)证明:∵长方形中,,为的中点,,故∴∵∴.(II)建立如图所示的直角坐标系,则平面的一个法向量,设,设平面AME的一个法向量为取,得得,而则,得,解得因为,故.【点睛】空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.19、(1)答案见解析(2)【解析】
(1)设底面圆的半径为,圆锥的母线,因为圆锥的侧面展开图扇形弧长与圆锥的底面圆的周长相等,列出底面半径和关系式,即可证明:圆锥的母线与底面所成的角为.(2)因为圆锥的侧面积为,即可求得其母线长.由⑴可知,可得.在平面建立坐标系,以原点,为轴正方向,设抛物线方程,代入即可求得,进而抛物线焦点到准线的距离.【详解】(1)设底面圆的半径为,圆锥的母线圆锥的侧面展开图扇形弧长与圆锥的底面圆的周长相等可得由题意可知:底面圆中故:圆锥的母线与底面所成的角为(2)圆锥的侧面积为可得,故:可得中,为的中点,可得在平面建立坐标系,以原点,为轴正方向.如图:设抛物线方程代入可得根据抛物线性质可知,抛物线焦点到准线的距离为.抛物线焦点到准线的距离.【点睛】本题考查了线面夹角和抛物线相关知识.利用解析几何思想,通过建立坐标系,写出抛物线方程,研究曲线方程来求解相关的量,着重考查了推理与运算能力,属于中档试题.20、(1)(2)见解析【解析】
(1)首先求函数的导数,然后判断函数的单调性,最后求最值;(2)根据(1)首先求函数的零点,从而去掉的绝对值,分段求函数的单调区间,最后再比较单调区间的长度.【详解】解(1)因为,所以在单调递减,单调递增,所以.(2)由(1)可知,在单调递减,单调递增又,,所以存在,使得,则当时,,当时,所以,记,当时,,所以在单调递增,在单调递减.当或时,当时即在单调递增.因为,所以则当时,令,有所以当时,,在单调递减综上,在与单调递减,在与单调递增.所以,又所以,即【点睛】本题考查了利用函数的导数研究函数的单调性,属于中档题型,本题的一个难点是函数的零点,其中一个是,另一个不确定,只能估算其范围,设为,所以再求当或时,函数的单调区间时,也需估算比较的范围,确定时函数的减区间,这种估算零点存在性问题,是导数常考题型.21、(1)4,9,16;(2)an【解析】
(1)根据数列递推关系,把n=1,2,3分别代入,求出a2(2)先假设n=k时,ak=k【详解】(1)∵a1=1,∴a2故a2,a(2)由(1)猜想an①当n=1时,a1②设n=k时,猜想成立,即ak则当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度保险合同抵押物变更条件带眉脚
- 2024年别墅销售协议标准格式样本版
- 2024年家具出口进口合作协议
- 2024年定制场地商业租赁协议格式版B版
- 2024届检测分析技术服务协议书版B版
- 2024年工程居间合作合同范本版B版
- 2024年度劳务协议附加协议样本版B版
- 2024年委托股权托管服务明细合同版
- 2024年度停车场车位寄存服务合同
- 2024年度供应商产品供应合作协议模板版B版
- 开采硅石施工方案模板范本
- 诊所抗菌药物管理制度
- 云南财经大学论文模版
- 半导体专业术语English
- 核苷酸代谢 完整版
- 高中物理学习方法技巧分享PPT
- 中性粒细胞减少伴发热的健康教育课件ppt
- 教育学课程单元1-20答案(江苏师范大学成人高等教育)
- 多功能酶标仪等设备用户需求书
- 人教版九上语文(2018部编版)-读读写写看拼音写汉字(4-6单元)
- 部编版《道德与法治》四年级上册第8课《网络新世界》说课课件
评论
0/150
提交评论