版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某班数学课代表给全班同学出了一道证明题.甲说:“丙会证明.”乙说:“我不会证明.”丙说:“丁会证明.”丁说:“我不会证明.”以上四人中只有一人说了真话,只有一人会证明此题.根据以上条件,可以判定会证明此题的人是()A.甲 B.乙 C.丙 D.丁2.已知集合,,,则()A. B. C. D.3.设,随机变量的分布列如图,则当在内增大时,()A.减小 B.增大C.先减小后增大 D.先增大后减小4.中,,是的中点,若,则().A. B. C. D.5.已知直线与抛物线交于、两点,若四边形为矩形,记直线的斜率为,则的最小值为().A.4 B. C.2 D.6.长方体中,,,则直线与平面ABCD所成角的大小()A. B. C. D.7.甲、乙两名游客来龙岩旅游,计划分别从“古田会址”、“冠豸山”、“龙崆洞”、“永福樱花园”四个旅游景点中任意选取3个景点参观游览,则两人选取的景点中有且仅有两个景点相同的概率为()A. B. C. D.8.方程至少有一个负根的充要条件是A. B. C. D.或9.用数学归纳法证明不等式“”时的过程中,由到时,不等式的左边()A.增加了一项B.增加了两项C.增加了两项,又减少了一项D.增加了一项,又减少了一项10.某程序框图如图所示,则该程序运行后输出的值是()A.0 B.-1 C.-2 D.-811.已知函数,若,且对任意的恒成立,则的最大值为A.3 B.4 C.5 D.612.设函数是定义在上的偶函数,且,若,则A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若随机变量,则,.已知随机变量,则__________.14.一个高为的正三棱锥的底面正三角形的边长为3,则此正三棱锥的表面积为_______.15.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件.再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件.给出下列结论:①P(B)25;②P(B|A1)511;③事件B与事件A1相互独立;④A1,A2,A3是两两互斥的事件;⑤P(B)的值不能确定,因为它与A1,A2,A3中究竟哪一个发生有关;其中正确的有()②④①③②④⑤②③④⑤16.已知是与的等比中项,则圆锥曲线的离心率是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(为常数)在处取得极值.(Ⅰ)求实数的取值;(Ⅱ)求当时,函数的最大值.18.(12分)如图,四棱锥中,底面是梯形,,,底面点是的中点.(Ⅰ)证明:;(Ⅱ)若且与平面所成角的大小为,求二面角的正弦值.19.(12分)互联网正在改变着人们的生活方式,在日常消费中手机支付正逐渐取代现金支付成为人们首选的支付方式.某学生在暑期社会活动中针对人们生活中的支付方式进行了调查研究.采用调查问卷的方式对100名18岁以上的成年人进行了研究,发现共有60人以手机支付作为自己的首选支付方式,在这60人中,45岁以下的占,在仍以现金作为首选支付方式的人中,45岁及以上的有30人.(1)从以现金作为首选支付方式的40人中,任意选取3人,求这3人至少有1人的年龄低于45岁的概率;(2)某商家为了鼓励人们使用手机支付,做出以下促销活动:凡是用手机支付的消费者,商品一律打八折.已知某商品原价50元,以上述调查的支付方式的频率作为消费者购买该商品的支付方式的概率,设销售每件商品的消费者的支付方式都是相互独立的,求销售10件该商品的销售额的数学期望.20.(12分)已知集合,.(Ⅰ)当时,求A∩(∁RB);(Ⅱ)当时,求实数m的值.21.(12分)甲、乙两种不同规格的产品,其质量按测试指标分数进行划分,其中分数不小于82分的为合格品,否则为次品.现随机抽取两种产品各100件进行检测,其结果如下:测试指标分数甲产品81240328乙产品71840296(1)根据以上数据,完成下面的列联表,并判断是否有的有把握认为两种产品的质量有明显差异?甲产品乙产品合计合格品次品合计(2)已知生产1件甲产品,若为合格品,则可盈利40元,若为次品,则亏损5元;生产1件乙产品,若为合格品,则可盈利50元,若为次品,则亏损10元.记为生产1件甲产品和1件乙产品所得的总利润,求随机变量的分布列和数学期望(将产品的合格率作为抽检一件这种产品为合格品的概率).附:0.150.100.050.0250.0100.0050.0012.7022.7063.8415.0246.6357.87910.82822.(10分)已知函数(为自然对数的底数).(1)当时,求函数的极值;(2)若函数在区间上单调递增,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】如果甲会证明,乙与丁都说了真话,与四人中只有一人说了真话相矛盾,不合题意;排除选项;如果丙会证明,甲乙丁都说了真话,与四人中只有一人说了真话相矛盾,不合题意,排除选项;如果丁会证明,丙乙都说了真话,与四人中只有一人说了真话相矛盾,不合题意,排除选项,故选B.2、D【解析】
按照补集、交集的定义,即可求解.【详解】,,.
故选:D.【点睛】本题考查集合的混合计算,属于基础题.3、D【解析】
先求数学期望,再求方差,最后根据方差函数确定单调性.【详解】,,,∴先增后减,因此选D.【点睛】4、D【解析】
作出图象,设出未知量,在中,由正弦定理可得,进而可得,在中,还可得,建立等式后可得,再由勾股定理可得,即可得出结论.【详解】解:如图,设,,,,在中,由正弦定理可得,代入数据解得,故,而在中,,故可得,化简可得,解之可得,再由勾股定理可得,联立可得,故在中,,故选:D.【点睛】本题考查正弦定理的应用,涉及三角函数的诱导公式以及勾股定理的应用,属于中档题.5、B【解析】
设直线方程并与抛物线方程联立,根据,借助韦达定理化简得.根据,相互平分,由中点坐标公式可得,即可求得,根据基本不等式即可求得最小值.【详解】设,,设直线:将直线与联立方程组,消掉:得:由韦达定理可得:┄①,┄②,故,可得:┄③,,是上的点,,可得:┄④由③④可得:,结合②可得:和相互平分,由中点坐标公式可得,结合①②可得:,,故,根据对勾函数(对号函数)可知时,.(当且仅当)时,.(当且仅当)所以.故选:B.【点睛】本题主要考查直线与圆锥曲线的位置关系的应用问题,通过联立直线方程与抛物线方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,确定函数的性质进行求解.6、B【解析】
连接,根据长方体的性质和线面角的定义可知:是直线与平面ABCD所成角,在底面ABCD中,利用勾股定理可以求出,在中,利用锐角三角函数知识可以求出的大小.【详解】连接,在长方体中,显然有平面ABCD,所以是直线与平面ABCD所成角,在底面ABCD中,,在中,,故本题选B.【点睛】本题考查了线面角的求法,考查了数学运算能力.7、A【解析】
先求出两人从四个旅游景点中任意选取3个景点的所有选法,再求出两人选取的景点中有且仅有两个景点相同的选法,然后可求出对应概率.【详解】甲、乙两人从四个旅游景点中任意选取3个景点参观游览,总共有种选法,两人选取的景点中有且仅有两个景点相同,总共有,则两人选取的景点中有且仅有两个景点相同的概率为.故选A.【点睛】本题考查了概率的求法,考查了排列组合等知识,考查了计算能力,属于中档题.8、C【解析】试题分析:①时,显然方程没有等于零的根.若方程有两异号实根,则;若方程有两个负的实根,则必有.②若时,可得也适合题意.综上知,若方程至少有一个负实根,则.反之,若,则方程至少有一个负的实根,因此,关于的方程至少有一负的实根的充要条件是.故答案为C考点:充要条件,一元二次方程根的分布9、C【解析】解:n=k时,左边="1"/k+1+1/k+2++1/k+k,n=k时,左边="1"/(k+1)+1+1/(k+1)+2++1/(k+1)+(k+1)="(1/"k+1+1/k+2++1/k+k)-1/k+1+1/2k+1+1/2k+2故选C10、B【解析】根据流程图可得:第1次循环:;第2次循环:;第3次循环:;第4次循环:;此时程序跳出循环,输出.本题选择B选项.11、B【解析】由,则=可化简为,构造函数,,令,即在单调递增,设,因为,,所以,且,故在上单调递减,上单调递增,所以,又,,即k的最小值为4,故选B.点睛:本题考查函数的恒成立和有解问题,属于较难题目.首先根据自变量x的范围,分离参数和变量,转化为新函数g(x)的最值,通过构造函数求导判断单调性,可知在上单调递减,上单调递增,所以,且,,通过对最小值化简得出的范围,进而得出k的范围.12、D【解析】
根据函数的奇偶性求出和的值即可得到结论.【详解】是定义在上的偶函数,,,即,则,故选D.【点睛】本题主要考查函数值的计算,以及函数奇偶性的应用,意在考查灵活应用所学知识解答问题的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、0.8185【解析】分析:根据正态曲线的对称性和特殊区间上的概率可求出和,然后求出这两个概率的和即可.详解:由题意得,∴,,∴.点睛:本题考查正态分布,考查正态曲线的对称性和三个特殊区间上的概率,解题的关键是将所求概率合理地转化为特殊区间上的概率求解.14、【解析】
取中点,连结,,过作平面,交于,则,,,,此正三棱锥的表面积:,由此能求出结果.【详解】一个高为的正三棱锥中,,取中点,连结,,过作平面,交于,则,,,,此正三棱锥的表面积:.故答案为:.【点睛】本题考查正三棱锥的表面积的求法,考查正三棱锥的性质等基础知识,考查运算求解能力和空间想象能力.15、②④【解析】试题解析::由题意可知A1,A2,AP(B|A3=P(A1)P(B|A1考点:相互独立事件,条件概率.【方法点晴】本题主要考查了相互独立事件,条件概率的求法等,解题的关键是理解题设中的各个事件,且熟练掌握相互独立事件的概率公式,本题较为复杂,正确理解事件的内涵是解题的突破点.解答本题的关键是在理解题意的基础上判断出A1,A2,A3是两两互斥的事件,根据条件概率公式得到P(B|A116、或【解析】分析:根据等比中项,可求出m的值为;分类讨论m的不同取值时圆锥曲线的不同,求得相应的离心率。详解:由等比中项定义可知所以当时,圆锥曲线为椭圆,离心率当时,圆锥曲线为双曲线,离心率所以离心率为或2点睛:本题考查了数列和圆锥曲线的综合应用,基本概念和简单的分类讨论,属于简单题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)是函数的最大值,即.【解析】分析:(1)先求一阶导函数的根,求解或的解集,写出单调区间,再判断极值的情况。(2)先求在的极值,再判断最值。详解:(1),由题意知,.解得,经检验,符合题意.(Ⅱ)证明:由(1)得.则,所以.当时,,单调递增;当时,,单调递减.所以是函数的最大值,即.点睛:极值转化为最值的性质:1、若上有唯一的极小值,且无极大值,那么极小值为的最小值;2、若上有唯一的极大值,且无极小值,那么极大值为的最大值;18、(Ⅰ)见解析(Ⅱ)【解析】
(I)根据已知条件得到,,由此证得平面.从而证得,结合,证得平面,进而证得.(II)作出与平面所成的角,通过线面角的大小计算出有关的边长,作出二面角的平面角,解直角三角形求得二面角的正弦值.【详解】(Ⅰ)证明:因为平面,平面,所以.又由是梯形,,,知,而,平面,平面,所以平面.因为平面,所以.又,点是的中点,所以.因为,平面,平面,所以平面.因为平面,所以.(Ⅱ)解:如图所示,过作于,连接,因为平面,平面,所以,则平面,于是平面平面,它们的交线是.过作于,则平面,即在平面上的射影是,所以与平面所成的角是.由题意,.在直角三角形中,,于是.在直角三角形中,,所以.过作于,连接,由三垂线定理,得,所以为二面角的平面角,在直角三角形中,,.在直角三角形中,,所以二面角的正弦值为.【点睛】本小题主要考查线线垂直的证明,考查线面垂直的证明,考查线面角的应用,考查面面角的求法,属于中档题.19、(1);(2)440【解析】
(1)先计算出选取的人中,全都是高于岁的概率,然后用减去这个概率,求得至少有人的年龄低于岁的概率.(2)首先确定“销售的10件商品中以手机支付为首选支付的商品件数”满足二项分布,求得销售额的表达式,然后利用期望计算公式,计算出销售额的期望.【详解】(1)设事件表示至少有1人的年龄低于45岁,则.(2)由题意知,以手机支付作为首选支付方式的概率为.设表示销售的10件商品中以手机支付为首选支付的商品件数,则,设表示销售额,则,所以销售额的数学期望(元).【点睛】本小题主要考查利用对立事件来计算古典概型概率问题,考查二项分布的识别和期望的计算,考查随机变量线性运算后的数学期望的计算.20、(Ⅰ){x|3≤x≤5,或x=﹣1}(Ⅱ)m=1【解析】
(Ⅰ)求出A={y|﹣1≤y≤5},m=3时,求出B={x|﹣1<x<3},然后进行补集、交集的运算即可;(Ⅱ)根据A∪B={x|﹣2<x≤5}即可得出,x=﹣2是方程x2﹣2x﹣m=0的实数根,带入方程即可求出m.【详解】(Ⅰ)A={y|﹣1≤y≤5},m=3时,B={x|﹣1<x<3};∴∁RB={x|x≤﹣1,或x≥3};∴A∩(∁RB)={x|3≤x≤5,或x=﹣1};(Ⅱ)∵A∪B={x|﹣2<x≤5};∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度互联网医疗平台履约反担保合同4篇
- 二零二五年度家庭式私房菜厨师聘用合同
- 二零二五年度酒店与旅游导游公司合作合同
- 二零二五年度渔业资源承包与品牌建设合同
- 二零二五版图书馆专业数据库采购合同范本3篇
- 二零二五年度罗马柱装饰工程合同二零二五年度合同履行进度报告协议4篇
- 二零二五年度移动应用开发合同
- 2025年厂区门卫服务与网络安全保障合同4篇
- 二零二五年金融科技合资成立公司合同3篇
- 2025年度旅游车辆租赁与景区活动策划服务合同4篇
- 《新生儿预防接种》课件
- 小学五年级上册数学寒假作业每日一练
- DB1303T382-2024 创伤性休克患者护理指南
- 2024年03月内蒙古中国银行内蒙古分行春季校园招考笔试历年参考题库附带答案详解
- 链家、贝壳专业租房协议、房屋租赁合同、房屋出租协议
- 2024-2025学年华东师大新版八年级上册数学期末复习试卷(含详解)
- 《道路车辆 48V供电电压的电气及电子部件 电性能要求和试验方法》文本以及编制说明
- 2024年新高考I卷数学高考试卷(原卷+答案)
- 十八项医疗核心制度考试题与答案
- 大学生职业规划大赛生涯发展报告
- 2024年鄂尔多斯市国资产投资控股集团限公司招聘管理单位遴选500模拟题附带答案详解
评论
0/150
提交评论