版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数在区间上是单调递增函数,则的取值范围是()A. B. C. D.2.某随机变量服从正态分布,若在内取值的概率为0.6则在内取值的概率为()A.0.2 B.0.4 C.0.6 D.0.33.已知为双曲线的右焦点,过原点的直线与双曲线交于,两点,若且的周长为,则该双曲线的离心率为()A. B. C. D.4.某医疗机构通过抽样调查(样本容量n=1000),利用2×2列联表和统计量研究患肺病是否与吸烟有关.计算得,经查阅临界值表知,下列结论正确的是()0.0500.0100.001k3.8416.63510.828A.在100个吸烟的人中约有95个人患肺病 B.若某人吸烟,那么他有的可能性患肺病C.有的把握认为“患肺病与吸烟有关” D.只有的把握认为“患肺病与吸烟有关”5.已知,,是不全相等的正数,则下列命题正确的个数为()①;②与及中至少有一个成立;③,,不能同时成立.A. B. C. D.6.下列函数中,满足“且”的是()A. B.C. D.7.下列函数中,以为周期且在区间(,)单调递增的是A.f(x)=│cos2x│ B.f(x)=│sin2x│C.f(x)=cos│x│ D.f(x)=sin│x│8.下列命题不正确的是()A.研究两个变量相关关系时,相关系数r为负数,说明两个变量线性负相关B.研究两个变量相关关系时,相关指数R2越大,说明回归方程拟合效果越好.C.命题“∀x∈R,cosx≤1”的否定命题为“∃x0∈R,cosx0>1”D.实数a,b,a>b成立的一个充分不必要条件是a3>b39.若且;则的展开式的系数是()A. B. C. D.10.将两颗骰子各掷一次,设事件A为“两颗骰子向上点数不同”,事件B为“至少有一颗骰上点数为3点”则()A. B. C. D.11.如图,设区域,向区域内随机投一点,且投入到区域内任一点都是等可能的,则点落到由曲线与所围成阴影区域内的概率是()A.B.C.D.12.已知函数是定义在上的偶函数,并且满足,当时,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数的值域为_______.14.已知实数满足则的最大值为__________.15.右图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,据此可估计黑色部分的面积为_____________.16.已知变数满足约束条件目标函数仅在点处取得最大值,则的取值范围为_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)对某班50名学生的数学成绩和对数学的兴趣进行了调查,统计数据如下表所示:对数学感兴趣对数学不感兴趣合计数学成绩好17825数学成绩一般52025合计222850(1)试运用独立性检验的思想方法分析:学生学习数学的兴趣与数学成绩是否有关系,并说明理由.(2)从数学成绩好的同学中抽取4人继续调查,设对数学感兴趣的人数为,求的分布列和数学期望.附:0.0500.0100.0013.8416.63510.828.18.(12分)已知二次函数的值域为,且,.(Ⅰ)求的解析式;(Ⅱ)若函数在上是减函数,求实数的取值范围.19.(12分)如图,直三棱柱的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱的长为5.(1)求三棱柱的体积;(2)设M是BC中点,求直线与平面所成角的大小.20.(12分)已知函数,.(1)解不等式;(2)若方程在区间有解,求实数的取值范围.21.(12分)已知等差数列中,,.(1)求数列的通项公式;(2)求数列的前项和.22.(10分)设椭圆经过点,其离心率.(1)求椭圆的方程;(2)直线与椭圆交于、两点,且的面积为,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
对函数求导,将问题转化为恒成立,构造函数,将问题转化为来求解,即可求出实数的取值范围.【详解】,,令,则.,其中,且函数单调递增.①当时,对任意的,,此时函数在上单调递增,则,合乎题意;②当时,令,得,.当时,;当时,.此时,函数在处取得最小值,则,不合乎题意.综上所述,实数的取值范围是.故选:C.【点睛】本题考查利用函数的在区间上的单调性求参数的取值范围,解题时根据函数的单调性转化为导数的符号来处理,然后利用参变量分离法或分类讨论思想转化函数的最值求解,属于常考题,属于中等题。2、D【解析】分析:由正态分布曲线图,内取值的概率为0.6,区间关于对称,得解。详解:由正态分布曲线图,内取值的概率为,区间关于对称,故上的概率为.故选D点睛:正态分布,在区间段的概率,利用图像的对称性可得出左右两侧的区间的概率。3、D【解析】
设双曲线的另一个焦点为,则根据双曲线的对称性得为矩形,,由条件可得,由双曲线的定义,再由勾股定理可解得离心率.【详解】设双曲线的另一个焦点为,由.根据双曲线的对称性得为矩形,如图,.又的周长为,则…………①.由双曲线的定义………………②由①,②得.在直角三角形中,.则,即,所以.故选:D【点睛】本题考查双曲线的对称性和定义,求双曲线的离心率,属于难题.4、C【解析】
将计算出的与临界值比较即可得答案。【详解】由题得,且由临界值表知,所以有的把握认为“患肺病与吸烟有关”,故选C.【点睛】本题考查独立性检验,解题的关键是将估计值与临界值比较,属于简单题。5、C【解析】
①假设等式成立,由其推出a、b、c的关系,判断与题干是否相符;②假设其全部不成立,由此判断是否存在符合条件的数;③举例即可说明其是否能够同时成立.【详解】对①,假设(a-b)2+(b-c)2+(c-a)2=0⇒a=b=c与已知a、b、c是不全相等的正数矛盾,∴①正确;
对②,假设都不成立,这样的数a、b不存在,∴②正确;
对③,举例a=1,b=2,c=3,a≠c,b≠c,a≠b能同时成立,∴③不正确.
故选C.【点睛】本题考查命题真假的判断,利用反证法、分析法等方式即可证明,有时运用举例说明的方式更快捷.6、C【解析】
根据题意知,函数在上是减函数,根据选项判断即可。【详解】根据题意知,函数在上是减函数。选项A,在上是增函数,不符合;选项B,在上不单调,不符合;选项C,在上是减函数,符合;选项D,在上是增函数,不符合;综上,故选C。【点睛】本题主要考查函数单调性的定义应用以及常见函数的单调性的判断。7、A【解析】
本题主要考查三角函数图象与性质,渗透直观想象、逻辑推理等数学素养.画出各函数图象,即可做出选择.【详解】因为图象如下图,知其不是周期函数,排除D;因为,周期为,排除C,作出图象,由图象知,其周期为,在区间单调递增,A正确;作出的图象,由图象知,其周期为,在区间单调递减,排除B,故选A.【点睛】利用二级结论:①函数的周期是函数周期的一半;②不是周期函数;8、D【解析】
根据相关系数、相关指数的知识、全称命题的否定的知识,充分、必要条件的知识对四个选项逐一分析,由此得出命题不正确的选项.【详解】相关系数为负数,说明两个变量线性负相关,A选项正确.相关指数越大,回归方程拟合效果越好,B选项正确.根据全称命题的否定是特称命题的知识可知C选项正确.对于D选项,由于,所以是的充分必要条件,故D选项错误.所以选D.【点睛】本小题主要考查相关系数、相关指数的知识,考查全称命题的否定是特称命题,考查充要条件的判断,属于基础题.9、C【解析】
先根据求出,再代入,直接根据的展开式的第项为,即可求出展开式的系数。【详解】因为且所以展开式的第项为展开式中的系数为故选C【点睛】本题考查二项式展开式,属于基础题。10、D【解析】
用组合数公式计算事件A和事件AB包含的基本事件个数,代入条件概率公式计算.【详解】解:两颗骰子各掷一次包含的基本事件的个数是1.事件A包含的基本事件个数有,则.事件AB包含的基本事件个数为10,则.所以在事件A发生的条件下,事件B发生的概率为:,故选:D.【点睛】本题考查条件概率,属于基础题.11、B【解析】试题分析:图中阴影面积可以用定积分计算求出,即,正方形OABC的面积为1,所以根据几何概型面积计算公式可知,点落到阴影区域内的概率为。考点:1.定积分的应用;2.几何概型。12、D【解析】
先由题得出函数的周期,再将变量调节到范围内进行求解.【详解】因为,所令,则,所以可得,即,所以函数的周期为,则,又因为函数是定义在上的偶函数,且当时,所以故选D【点睛】本题考查函数的基本性质,包括周期性,奇偶性,解题的关键是先求出函数的周期,属于一般题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用导数求出函数的单调性,由单调性即可得出值域.【详解】当,当所以函数在区间上单调递增,在区间上单调递减则即函数的值域为故答案为:【点睛】本题主要考查了利用导数求函数的值域,属于基础题.14、3【解析】分析:画出不等式组对应的可行域,利用线性规划就可以求出的最大值.详解:可行域如图所示,由的,当东至县过时,,故填.点睛:一般地,二元不等式(或等式)条件下二元函数的最值问题可以用线性规划或基本不等式求最值.15、9.【解析】分析:计算正方形二维码的面积,利用面积比等于对应的点数比求得黑色部分的面积.详解:边长为4的正方形二维码面积为,设图中黑色部分的面积为S,则,解得.据此估计黑色部分的面积为9.故答案为:9.点睛:本题考查了用模拟实验的方法估计概率的应用计算问题,是基础题.16、【解析】
试题分析:由题意知满足条件的线性区域如图所示:,点,而目标函数仅在点处取得最大值,所以考点:线性规划、最值问题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)有99.9%的把握认为有关系,理由详见解析;(2)分布列详见解析,数学期望为2.72【解析】
根据表中数据计算观测值,对照临界值得出结论;
由题意知随机变量X的可能取值,计算对应的概率值,写出分布列和数学期望值.【详解】(1).因为,所以有99.9%的把握认为有关系.(2)由题意知,的取值为0,1,2,3,1.因为,.所以,分布列为01231所以,.【点睛】本题考查了独立性检验与离散型随机变量的分布列应用问题,是中档题.18、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)设二次函数的解析式为,根据题意可得关于的方程组,解方程组即可求得的解析式;(Ⅱ)将的解析式代入,并构造函数,根据复合函数单调性的性质,即可得知在上为单调递增函数.根据二次函数的对称性及对数函数定义域要求即可求得的取值范围.【详解】(Ⅰ)设,由题意知.则,解得,所以的解析式为.(Ⅱ)由题意知,令,则为单调递减函数,所以在上是单调递增函数.对称轴为,所以,解得.因为,即,解得.综上:实数的取值范围为.【点睛】本题考查了二次函数的性质及解析式的求法,对数型复合函数单调性的性质应用,注意对数函数定义域的要求,属于基础题.19、(1)2;(2)【解析】
(1)三棱柱的体积,由此能求出结果;(2)连结是直线与平面所成角,由此能求出直线与平面所成角的大小.【详解】解:(1)∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为1.∴三棱柱ABC﹣A1B1C1的体积:V=S△ABC×AA12.(2)连结AM,∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为1,M是BC中点,∴AA1⊥底面ABC,AM,∴∠A1MA是直线A1M与平面ABC所成角,tan∠A1MA,∴直线A1M与平面ABC所成角的大小为arctan.【点睛】本题考查三棱柱的体积的求法,考查线面角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.20、(1)(2)【解析】
(1)通过讨论的范围得到关于的不等式组,解出即可;(2)根据题意,原问题可以等价函数和函数图象在区间上有交点,结合二次函数的性质分析函数的值域,即可得答案.【详解】解:(1)可化为,故,或,或;解得:,或,或;不等式的解集为;(2)由题意:,.故方程在区间有解函数和函数,图像在区间上有交点当时,实数的取值范围是.【点睛】本题考查绝对值不等式的性质以及应用,注意零点分段讨论法的应用,属于中档题.21、(1)(2)【解析】
(1)先设等差数列的公差为,根据题中条件求出公差,即可得出通项公式;(2)根据前项和公式,即可求出结果.【详解】(1)依题意,设等差数列的公差为,因为,所以,又,所以公差,所以.(2)由(1)知,,所以【点睛】本题主要考查等差数列,熟记等差数列的通项公式与前项和公式即可,属于基础题型.22、(1);(2).【解析】分析:(1)由经过点P,得,由离心率为得=,再根据a2=b2+c2联立解方程组即可;(2)联立直线方程与椭圆方程消y,得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州装备制造职业学院《化工环保》2023-2024学年第一学期期末试卷
- 贵州应用技术职业学院《房地产项目投资分析》2023-2024学年第一学期期末试卷
- 贵州铜仁数据职业学院《教育学基础A》2023-2024学年第一学期期末试卷
- 贵州师范学院《数字逻辑》2023-2024学年第一学期期末试卷
- 2025-2030年中国空调维修与售后行业商业模式创新战略制定与实施研究报告
- 2025-2030年中国电影行业资本规划与股权融资战略制定与实施研究报告
- 2025-2030年中国Mini LED行业全国市场开拓战略制定与实施研究报告
- 2025-2030年中国影视后期制作行业营销创新战略制定与实施研究报告
- 2025-2030年中国预应力混凝土用钢材行业营销创新战略制定与实施研究报告
- 2025-2030年中国文具行业开拓第二增长曲线战略制定与实施研究报告
- 工业设计基础知识单选题100道及答案解析
- 山西省晋中市2023-2024学年高一上学期期末考试 化学 含解析
- 过程审核表(产品组评分矩阵评审提问表(评分))-2024年百度过
- 操作手册模板【范本模板】
- 2025年湖北省武汉市高考数学模拟试卷附答案解析
- 【工作总结】建筑中级职称专业技术工作总结
- 江苏省2022年普通高中学业水平合格性考试数学试题(考试版)
- 2023年二轮复习解答题专题三:一次函数的应用方案选取型(原卷版+解析)
- 2024版小学英语新课程标准测试题及答案
- 多旋翼无人机驾驶员执照(CAAC)备考试题库大全-上部分
- 2024年村级意识形态工作计划
评论
0/150
提交评论