版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.实验女排和育才女排两队进行比赛,在一局比赛中实验女排获胜的概率是,没有平局.若采用三局两胜制,即先胜两局者获胜且比赛结束,则实验女排获胜的概率等于()A. B. C. D.2.已知,函数,若函数恰有三个零点,则()A. B.C. D.3.若y=fx在-∞,+∞可导,且lim△x→0fA.23 B.2 C.3 D.4.已知i是虚数单位,则复数的共轭复数在复平面内对应的点所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.《中国诗词大会》(第二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有()A.288种 B.144种 C.720种 D.360种6.某煤气站对外输送煤气时,用1至5号五个阀门控制,且必须遵守以下操作规则:①若开启3号,则必须同时开启4号并且关闭2号;②若开启2号或4号,则关闭1号;③禁止同时关闭5号和1号.则阀门的不同开闭方式种数为()A.7 B.8 C.11 D.147.()A.0 B. C.1 D.28.若,则()A. B.C. D.9.已知函数恰有两个零点,则实数的取值范围是()A. B. C. D.10.已知正实数、、满足,,,则、、的大小关系是()A. B. C. D.11.设,下列不等式中正确的是()①②③④A.①和② B.①和③ C.①和④ D.②和④12.已知三棱锥的底面是等边三角形,点在平面上的射影在内(不包括边界),.记,与底面所成角为,;二面角,的平面角为,,则,,,之间的大小关系等确定的是()A. B.C.是最小角,是最大角 D.只能确定,二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,若与垂直,则的值为______.14.已知集合若,则a的取值范围是________.15.己知,集合中有且仅有三个整数,则实数的取值范围为________.16.已知集合,集合,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数为自然对数的底数).(Ⅰ)求函数的单调区间;(Ⅱ)若,证明:关于的不等式在上恒成立.18.(12分)已知定义域为的函数,是奇函数.(1)求,的值;(2)若对任意的,不等式恒成立,求实数的取值范围.19.(12分)在一个圆锥内作一个内接等边圆柱(一个底面在圆锥的底面上,且轴截面是正方形的圆柱),再在等边圆柱的上底面截得的小圆锥内做一个内接等边圆柱,这样无限的做下去.(1)证明这些等边圆柱的体积从大到小排成一个等比数列;(2)已知这些等边圆柱的体积之和为原来圆锥体积的,求最大的等边圆柱的体积与圆锥的体积之比.20.(12分)在数列中,,,且对任意的N*,都有.(Ⅰ)证明数列是等比数列,并求数列的通项公式;(Ⅱ)设,记数列的前项和为,若对任意的N*都有,求实数的取值范围.21.(12分)已知函数.(1)当时,判断函数的单调性;(2)若关于的方程有两个不同实根,求实数的取值范围,并证明.22.(10分)在直角坐标系中,曲线过点,其参数方程为(为参数).以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)若与交于,两点,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】试题分析:实验女排要获胜必须赢得其中两局,可以是1,2局,也可以是1,3局,也可以是2,3局.故获胜的概率为:,故选B.考点:独立事件概率计算.2、C【解析】
当时,最多一个零点;当时,,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得.【详解】当时,,得;最多一个零点;当时,,,当,即时,,在,上递增,最多一个零点.不合题意;当,即时,令得,,函数递增,令得,,函数递减;函数最多有2个零点;根据题意函数恰有3个零点函数在上有一个零点,在,上有2个零点,如图:且,解得,,.故选.【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.3、D【解析】
根据导数的定义进行求解即可.【详解】∵lim△x→0∴23即23则f'故选D.【点睛】本题主要考查导数的计算,根据导数的极限定义进行转化是解决本题的关键.4、A【解析】
先将复数化为代数形式,再根据共轭复数的概念确定对应点,最后根据对应点坐标确定象限.【详解】解:∵,∴,∴复数z的共轭复数在复平面内对应的点的坐标为(),所在的象限为第一象限.故选:A.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如.其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为5、B【解析】
根据题意分步进行分析:①用倍分法分析《将进酒》,《望岳》和另外两首诗词的排法数目;②用插空法分析《山居秋暝》与《送杜少府之任蜀州》的排法数目,由分步计数原理计算可得答案【详解】根据题意分步进行分析:①将《将进酒》,《望岳》和另外两首诗词的首诗词全排列,则有种顺序《将进酒》排在《望岳》的前面,这首诗词的排法有种②,这首诗词排好后,不含最后,有个空位,在个空位中任选个,安排《山居秋暝》与《送杜少府之任蜀州》,有种安排方法则后六场的排法有种故选【点睛】本题考查的是有关限制条件的排列数的问题,第一需要注意先把不相邻的元素找出来,将剩下的排好,这里需要注意定序问题除阶乘,第二需要将不相邻的两个元素进行插空,利用分步计数原理求得结果,注意特殊元素特殊对待。6、A【解析】
分两类解决,第一类:若开启3号,然后对2号和4号开启其中一个即可判断出1号和5号情况,第二类:若关闭3号,关闭2号关闭4号,对1号进行讨论,即可判断5号,由此可计算出结果.【详解】解:依题意,第一类:若开启3号,则开启4号并且关闭2号,此时关闭1号,开启5号,此时有1种方法;第二类:若关闭3号,①开启2号关闭4号或关闭2号开启4号或开启2号开启4号时,则关闭1号,开启5号,此时有种3方法;②关闭2号关闭4号,则开启1号关闭5号或开启1号开启5号或关闭1号,开启5号,此时有种3方法;综上所述,共有种方式.故选:A.【点睛】本题考查分类加法计数原理,属于中档题.7、C【解析】
根据定积分的意义和性质,,计算即可得出.【详解】因为,故选C.【点睛】本题主要考查了含绝对值的被积函数的定积分求值,定积分的性质,属于中档题.8、A【解析】
根据条件构造函数,再利用导数研究单调性,进而判断大小.【详解】①令,则,∴在上单调递增,∴当时,,即,故A正确.B错误.②令,则,令,则,当时,;当时,,∴在上单调递增,在上单调递减,易知C,D不正确,故选A.【点睛】本题考查利用导数研究函数单调性,考查基本分析判断能力,属中档题.9、A【解析】
先将函数有零点,转化为对应方程有实根,构造函数,对函数求导,利用导数方法判断函数单调性,再结合图像,即可求出结果.【详解】由得,令,则,设,则,由得;由得,所以在上单调递减,在上单调递增;因此,所以在上恒成立;所以,由得;由得;因此,在上单调递减,在上单调递增;所以;又当时,,,作出函数图像如下:因为函数恰有两个零点,所以与有两不同交点,由图像可得:实数的取值范围是.故选A【点睛】本题主要考查函数零点以及导数应用,通常需要将函数零点转化为两函数交点来处理,通过对函数求导,利用导数的方法研究函数单调性、最值等,根据数形结合的思想求解,属于常考题型.10、A【解析】
计算出的值,然后考虑的大小.【详解】因为,所以,则,故选:A.【点睛】指对式的比较大小,可以从正负的角度来分析,也可以从同指数的角度来分析大小.11、C【解析】分析:利用绝对值三角不等式等逐一判断.详解:因为ab>0,所以a,b同号.对于①,由绝对值三角不等式得,所以①是正确的;对于②,当a,b同号时,,所以②是错误的;对于③,假设a=3,b=2,所以③是错误的;对于④,由绝对值三角不等式得,所以④是正确的.故答案为:C.点睛:(1)本题主要考查绝对值不等式,意在考查学生对该知道掌握水平和分析推理能力.(2)对于类似这样的题目,方法要灵活,有的可以举反例,有的可以直接证明判断.12、C【解析】
过作PO⊥平面ABC,垂足为,过作OD⊥AB,交AB于D,过作OE⊥BC,交BC于E,过作OF⊥AC,交AC于F,推导出OA<OB<OC,AB=BC=AC,OD<OF<OE,且OE<OB,OF<OA,由此得到结论.【详解】解:如图,过作PO⊥平面ABC,垂足为,过作OD⊥AB,交AB于D,过作OE⊥BC,交BC于E,过作OF⊥AC,交AC于F,连结OA,OB,OC,PD,PE,PF,∵△ABC为正三角形,PA<PB<PC,二面角P−BC−A,二面角P−AC−B的大小分别为,,PA,PB与底面所成角为,,∴=∠PAO,=∠PBO,γ=∠PEO,=∠PFO,OA<OB<OC,AB=BC=AC,在直角三角形OAF中,,在直角三角形OBE中,,OA<OB,∠OAF<∠OBE,则OF<OE,同理可得OD<OF,∴OD<OF<OE,且OE<OB,OF<OA,∴<,<,>,<,可得是最小角,是最大角,故选:C.【点睛】本题考查线面角、二面角的大小的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】分析:根据题意,由向量坐标计算公式可得1﹣的坐标,由向量垂直与向量数量积的关系可得(1﹣)•=﹣3+x1=0,解可得x的值,进而由向量模的计算公式计算可得答案.详解:根据题意,向量=(1,x),=(﹣1,x),则1﹣=(3,x),若1﹣与垂直,则(1﹣)•=﹣3+x1=0,解可得:x=±,则||==1,故答案为1.点睛:本题考查向量数量积的坐标计算,关键是求出x的值.14、【解析】
首先可先求出二次方程的两根,由于可判断两根与0的大小,于是可得到答案.【详解】由于的两根为,由于,所以,即,解得,故答案为.【点睛】本题主要考查含参数的一元二次不等式解法,意在考查学生的分析能力和计算能力,难度不大.15、【解析】
首先分析出集合里面必有元素1,再讨论集合为,,三种情况讨论,求的取值范围.【详解】,,所以集合里的元素一定有1,集合有3个元素,当集合是时,有,集合是空集;当集合是时,有,解得:;当集合是时,有,集合是空集;综上:的取值范围是故答案为:【点睛】本题考查根据集合的元素个数求参数的取值范围,意在考查分类,转化,和计算求解能力,属于中档题型.16、{3,4}.【解析】
利用交集的概念及运算可得结果.【详解】,.【点睛】本题考查集合的运算,考查交集的概念与运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)的单调递增区间为和,单调递减区间为;(Ⅱ)证明见解析.【解析】
(Ⅰ)根据导数求解函数单调区间的步骤,确定定义域,求导,解导数不等式或,中间涉及到解含参的一元二次不等式的解法,注意分类讨论;(Ⅱ)构造函数,再利用题目条件进行放缩,得到,转化为求函数的最小值,即可证出。【详解】定义域为R,,令,则,则结合二次函数图像可知,当时,;当时,;当时,;故函数的单调递增区间为和,单调递减区间为;(II)令,当时,,而,故,故,令,故,故函数在上单调递减,则,则,即关于x的不等式在上恒成立.【点睛】本题主要考查利用导数求函数的单调区间问题,最值问题,证明恒成立问题,涉及到转化与化归思想的应用。灵活构造函数是解决本题的关键,合理放缩也是关键点,意在考查学生的逻辑推理、数学运算和数学建模的能力。18、(1);(2)【解析】
(1)先由求出,然后由求出(2)由得在上为减函数,然后将不等式化为即可.【详解】(1)因为是上的奇函数,所以,即,解得.从而有.又由知,解得.经检验,当时,,满足题意(2)由(1)知,由上式易知在上为减函数,又因为是奇函数,从而不等式等价于.因为是上的减函数,由上式推得.即对一切有,从而,解得.【点睛】本题主要考查的是利用函数的奇偶性和单调性解不等式,较为典型.19、(1)证明见解析;(2)【解析】
(1)求出第一个等边圆柱的体积,设第个等边圆柱的底面半径为,其外接圆锥的底面半径为,高为,则其体积,进一步求得第个等边圆柱的体积,作比可得这些等边圆柱的体积从大到小排成一个等比数列;(2)由这些等边圆柱的体积之和为原来圆锥体积的可得与的关系,则答案可求.【详解】(1)证明:如图,设圆锥的底面半径为,高为,内接等边圆柱的底面半径为,则由三角形相似可得:,可得.其体积.设第个等边圆柱的底面半径为,其外接圆锥的底面半径为,高为,则其体积,再设第个等边圆柱的底面半径为,则其外接圆锥的底面半径为,高为,则第个等边圆柱的体积.为定值,则这些等边圆柱的体积从大到小排成一个以为首项,以为公比的等比数列;(2)解:原来圆锥的体积为,这些等边圆柱的体积之和为.由,得,.则最大的等边圆柱的体积为,圆锥的体积为,体积之比为.【点睛】本题考查圆柱、圆锥体积的求法,考查等比数列的确定及所有项和公式的应用,是中档题.20、(Ⅰ)见证明;(Ⅱ)【解析】
(Ⅰ)可变形为,故是等比数列.利用累加法可以求出的通项.(Ⅱ)由(Ⅰ)知,用裂项相消法可求,求出的最小值后可得的取值范围.【详解】(Ⅰ)由可得.又,,所以,故.所以是首项为2,公比为2的等比数列.所以.所以.(Ⅱ)因为.所以.又因为对任意的都有,所以恒成立,即,即当时,.【点睛】给定数列的递推关系,我们常需要对其做变形构建新数列(新数列的通项容易求得),而数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度公司车辆租赁协议样本
- 2024道路安全员招聘协议样本
- 2024年聘用协议规范化样本
- 2023-2024学年郑州市高三下学期5月月考数学试题(A卷)
- 2024安全生产与环保综合管理协议
- 二手车交易过户协议范本2024
- 2024年度专项宣传品订制协议
- 2024年项目实施阶段服务协议范本
- 天津市河北区2024-2025学年高二上学期11月期中英语试题(无答案)
- 2024专业桃苗采购及种植服务协议
- 江苏省镇江市第二中学2023-2024学年高二上学期期中考试数学试卷(无答案)
- 2023-2024学年全国初一下生物人教版期末考试试卷(含答案解析)
- 职域行销BBC模式开拓流程-企业客户营销技巧策略-人寿保险营销实战-培训课件
- CPrimerPlus第六版中文版习题答案
- 点子图方格纸合计
- 乘法的故事(小学二年级课前小故事).ppt
- 《骨盆重要性》PPT课件.ppt
- WHO癌痛的三阶梯止痛的原则
- 第二节络合物的分子轨道理论
- 高等电力系统分析
- 运动与脂肪PPT课件
评论
0/150
提交评论