版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若y=fx在-∞,+∞可导,且lim△x→0fA.23 B.2 C.3 D.2.“因为指数函数是增函数(大前提),而是指数函数(小前提),所以函数是增函数(结论)”,上面推理的错误在于A.大前提错误导致结论错 B.小前提错误导致结论错C.推理形式错误导致结论错 D.大前提和小前提错误导致结论错3.某煤气站对外输送煤气时,用1至5号五个阀门控制,且必须遵守以下操作规则:①若开启3号,则必须同时开启4号并且关闭2号;②若开启2号或4号,则关闭1号;③禁止同时关闭5号和1号.则阀门的不同开闭方式种数为()A.7 B.8 C.11 D.144.已知角的顶点在坐标原点,始边与轴正半轴重合,终边在直线上,则()A. B. C. D.5.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=()A.3 B.1 C.-1 D.-36.一个几何体的三视图如图所示,则该几何体的体积为()A. B.8 C.6 D.7.函数在上单调递减,且为奇函数,若,则满足的的取值范围是()A. B. C. D.8.已知,,,(e为自然对数的底)则a,b,c的大小关系为()A. B.C. D.9.已知椭圆与双曲线有相同的焦点,点是两曲线的一个公共点,且,若椭圆离心率,则双曲线的离心率()A. B. C.3 D.410.已知函数的图象如图,则与的关系是:()A. B.C. D.不能确定11.复数等于()A. B. C.0 D.12.中,,是的中点,若,则().A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知随机变量,且,,则_______.14.根据如图所示的伪代码可知,输出的结果为______.15.若函数有最小值,则的取值范围是______.16.设空间两直线、满足(空集),则直线、的位置关系为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(I)求的减区间;(II)当时,求的值域.18.(12分)各项均为正数的数列的首项,前项和为,且.(1)求的通项公式:(2)若数列满足,求的前项和.19.(12分)已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.(1)当m=-1时,求A∪B;(2)若A⊆B,求实数m的取值范围;(3)若A∩B=∅,求实数m的取值范围.20.(12分)设函数.(1)讨论函数的单调性;(2)若函数恰有两个零点,求的取值范围.21.(12分)我市物价监督部门为调研某公司新开发上市的一种产品销售价格的合理性,对该公司的产品的销售与价格进行了统计分析,得到如下数据和散点图:定价(元/)102030405060年销售11506434242621658614.112.912.111.110.28.9图(1)为散点图,图(2)为散点图.(Ⅰ)根据散点图判断与,与哪一对具有较强的线性相关性(不必证明);(Ⅱ)根据(Ⅰ)的判断结果和参考数据,建立关于的回归方程(线性回归方程中的斜率和截距均保留两位有效数字);(Ⅲ)定价为多少时,年销售额的预报值最大?(注:年销售额定价年销售)参考数据:,,,,,,,,参考公式:,.22.(10分)已知二项式的展开式中第五项为常数项.(1)求展开式中二项式系数最大的项;(2)求展开式中有理项的系数和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据导数的定义进行求解即可.【详解】∵lim△x→0∴23即23则f'故选D.【点睛】本题主要考查导数的计算,根据导数的极限定义进行转化是解决本题的关键.2、A【解析】试题分析:大前提:指数函数是增函数错误,只有在时才是增函数考点:推理三段论3、A【解析】
分两类解决,第一类:若开启3号,然后对2号和4号开启其中一个即可判断出1号和5号情况,第二类:若关闭3号,关闭2号关闭4号,对1号进行讨论,即可判断5号,由此可计算出结果.【详解】解:依题意,第一类:若开启3号,则开启4号并且关闭2号,此时关闭1号,开启5号,此时有1种方法;第二类:若关闭3号,①开启2号关闭4号或关闭2号开启4号或开启2号开启4号时,则关闭1号,开启5号,此时有种3方法;②关闭2号关闭4号,则开启1号关闭5号或开启1号开启5号或关闭1号,开启5号,此时有种3方法;综上所述,共有种方式.故选:A.【点睛】本题考查分类加法计数原理,属于中档题.4、A【解析】
根据直线斜率与倾斜角的关系求出tanθ的值,原式利用诱导公式化简,再利用同角三角函数间的基本关系变形,将tanθ的值代入计算即可求出值.【详解】解:由已知可得,tanθ=2,则原式1.故选A.【点睛】此题考查了诱导公式的作用,三角函数的化简求值,以及直线斜率与倾斜角的关系,熟练掌握诱导公式是解本题的关键.5、D【解析】
∵f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),∴f(0)=1+b=0,解得b=-1∴f(1)=2+2-1=1.∴f(-1)=-f(1)=-1.故选D.6、A【解析】分析:由三视图可知,该几何体是一个四棱锥,它的底面是一个长宽分别为的矩形,棱锥的高为,利用棱锥的体积公式可得结果.详解:根据三视图知:由三视图可知,该几何体是一个四棱锥,它的底面是个长宽分别为的矩形,棱锥的高为,,故选A.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于中档题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.7、C【解析】
先由函数是奇函数求出,化原不等式为,再由函数的单调性,即可得出结果.【详解】因为为奇函数,若,则,所以不等式可化为,又在上单调递减,所以,解得.故选C【点睛】本题主要考查由函数的单调性与奇偶性解不等式,熟记函数基本性质即可,属于常考题型.8、A【解析】
根据条件即可得出,a=log2e,b=ln2,c=log23,容易得出log23>log2e>1,ln2<1,从而得出a,b,c的大小关系.【详解】∵;∴;∵log23>log2e>log22=1,ln2<lne=1;∴c>a>b.故选:A.【点睛】本题考查指数式和对数式的互化,对数的换底公式,考查了利用对数函数的单调性比较大小的问题,属于基础题.9、B【解析】
设,,由椭圆和双曲线的定义,解方程可得,,再由余弦定理,可得,与的关系,结合离心率公式,可得,的关系,计算可得所求值.【详解】设,,为第一象限的交点,由椭圆和双曲线的定义可得,,解得,,在三角形中,,可得,即有,可得,即为,由,可得,故选.【点睛】本题考查椭圆和双曲线的定义和性质,主要是离心率,考查解三角形的余弦定理,考查化简整理的运算能力,属于中档题.10、B【解析】
通过导数的几何意义结合图像即得答案.【详解】由于导数表示的几何意义是切线斜率,而由图可知,在A处的切线倾斜角小于在B处切线倾斜角,且都在第二象限,故,答案为B.【点睛】本题主要考查导数的几何意义,比较基础.11、A【解析】
直接化简得到答案.【详解】.故选:.【点睛】本题考查了复数的化简,属于简单题.12、D【解析】
作出图象,设出未知量,在中,由正弦定理可得,进而可得,在中,还可得,建立等式后可得,再由勾股定理可得,即可得出结论.【详解】解:如图,设,,,,在中,由正弦定理可得,代入数据解得,故,而在中,,故可得,化简可得,解之可得,再由勾股定理可得,联立可得,故在中,,故选:D.【点睛】本题考查正弦定理的应用,涉及三角函数的诱导公式以及勾股定理的应用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用随机变量,关于对称,结合已知求出结果【详解】随机变量满足,图象关于对称,则故答案为【点睛】本题考查了正态分布,由正态分布的对称性即可计算出结果14、72【解析】
模拟程序的运行,依次写出每次循环得到的的值,可得当时不满足条件,退出循环,输出的值为72.【详解】模拟程序的运行,可得满足条件,执行循环体,满足条件,执行循环体,;满足条件,执行循环体,;满足条件,执行循环体,,;不满足条件,退出循环,输出的值为72,故答案为72【点睛】本题考查循环结构的程序框图的应用,当循环的次数不多或有规律时,常采用模拟执行程序的方法解决,属于基础题.15、【解析】
分和两种情况讨论,根据外层函数的单调性、内层函数的最值以及真数恒大于零可得出关于实数的不等式组,由此可解出实数的取值范围.【详解】当时,外层函数为减函数,对于内层函数,,则对任意的实数恒成立,由于二次函数有最小值,此时函数没有最小值;当时,外层函数为增函数,对于内层函数,函数有最小值,若使得函数有最小值,则,解得.综上所述,实数的取值范围是.故答案为:.【点睛】本题考查实数的取值范围的求法,考查对数函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.16、平行或异面【解析】
根据空间线线的位置关系判断即可.【详解】解:因为,则直线、没有交点,故直线、平行或异面.故答案为:平行或异面.【点睛】本题考查空间线线的位置关系,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I)(II)【解析】
(I)对函数进行求导,求出导函数小于零时,的取值范围即可。(II)利用导数求出函数的增区间,结合(1),判断当时,函数的单调性,然后求出最值。【详解】解:(I)由函数,求导当,解得即的减区间(II)当,解得即在上递减,在上递增故的值域【点睛】本题考查了利用导数研究函数的单调性及在闭区间上的最值问题。18、(1);(2)【解析】
(1)已知,可得,则,并验证时,是否满足等式,从而知数列是等差数列,求其通项即可。(2)因为=,是由等差数列和等比数列的对应项的积组成的数列,用错位相减法即可求和。【详解】(1)因为,①所以当时,②①-②得:,因为的各项均为正数,所以,且,所以由①知,,即,又因为,所以故,所以数列是首项为,公差为的等差数列(2)由(1)得,所以,③④③-④得,当且时,,;当时,由③得综上,数列的前项和【点睛】本题主要考查了等差数列,等比数列以及数列的求和。利用等比数列求和公式时,当公比是字母时,要注意讨论公式的范围。属于中档题。19、(1)A∪B={x|-2<x<3}(2)(3)【解析】试题分析:(1)m=-1,用轴表示两个集合,做并集运算,注意空心点,实心点.(2)由于A⊆B,首先要保证1-m>2m,即集合B非空,然后由数轴表示关系,注意等号是否可取.(3)空集有两种情况,一种是集合B为空集,一种是集合B非空,此时用数灿表示,写出代数关系,注意等号是否可取.试题解析:(1)当m=-1时,B={x|-2<x<2},则A∪B={x|-2<x<3}(2)由A⊆B知,解得,即m的取值范围是(3)由A∩B=∅得①若,即时,B=∅符合题意②若,即时,需或得或∅,即综上知,即实数的取值范围为20、(1)见解析;(2)【解析】
(1),讨论a,求得单调性即可(2)利用(1)的分类讨论,研究函数最值,确定零点个数即可求解【详解】(1)因为,其定义域为,所以.①当时,令,得;令,得,此时在上单调递减,在上单调递增.②当时,令,得或;令,得,此时在,上单调递减,在上单调递增.③当时,,此时在上单调递减.④当时,令,得或;令,得,此时在,上单调递减,在上单调递增.(2)由(1)可知:①当时,.易证,所以.因为,,.所以恰有两个不同的零点,只需,解得.②当时,,不符合题意.③当时,在上单调递减,不符合题意.④当时,由于在,上单调递减,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《豆粕市场短期震荡》课件
- 合肥学校攀岩墙施工方案
- 初二美术教学工作计划范文美术工作计划
- 老伙伴计划岗位职责
- 2024区健康教育工作计划
- 科技计划科技报告编写模板
- 怎样做商业计划书
- 2024冰激凌店创业计划书
- 2024六年级班主任工作计划第一学期
- 行政后勤年度工作计划学校后勤年度工作计划
- 植物新品种权申请代理机构
- 科技成果转化与应用推广
- 肌肉能量技术(原创)
- GB/T 8564-2023水轮发电机组安装技术规范
- 安全总监安全生产责任考核表
- 上海市徐汇区上海小学小学语文五年级上册期末试卷(含答案)
- 国家开放大学《政治学原理》章节自检自测题参考答案
- 建筑施工安全生产隐患识别图集(附着式升降脚手架工程部分)
- 社区法律知识讲座
- 市医疗保险高值药品使用申请表
- 《哦香雪》省赛一等奖
评论
0/150
提交评论