版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列不等式中正确的有()①;②;③A.①③ B.①②③ C.② D.①②2.已知双曲线的一条渐近线恰好是圆的切线,且双曲线的一个焦点到渐近线的距离为,则双曲线的方程为()A. B. C. D.3.阅读如图所示的程序框图,则输出的S等于()A.38 B.40 C.20 D.324.如图:在直棱柱中,,,分别是A1B1,BC,CC1的中点,则直线PQ与AM所成的角是()A. B. C. D.5.已知为自然对数的底数,则函数的单调递增区间是()A. B. C. D.6.设a,b均为正实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件7.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种 B.216种 C.240种 D.288种8.已知集合,,,则()A. B. C. D.9.函数的部分图像可能是()A. B. C. D.10.给出四个函数,分别满足①;②;③;④,又给出四个函数图象正确的匹配方案是()A.①—丁②—乙③—丙④—甲B.①—乙②—丙③—甲④—丁C.①—丙②—甲③—乙④—丁D.①—丁②—甲③—乙④—丙11.如果把个位数是,且恰有个数字相同的四位数叫做“伪豹子数”那么在由,,,,五个数字组成的有重复数字的四位数中,“伪豹子数”共有()个A. B. C. D.12.某市某校在秋季运动会中,安排了篮球投篮比赛.现有20名同学参加篮球投篮比赛,已知每名同学投进的概率均为0.4,每名同学有2次投篮机会,且各同学投篮之间没有影响.现规定:投进两个得4分,投进一个得2分,一个未进得0分,则其中一名同学得2分的概率为()A.0.5 B.0.48 C.0.4 D.0.32二、填空题:本题共4小题,每小题5分,共20分。13.已知表示两个不同的平面,为平面内的一条直线,则“构成直二面角”是“”的______条件(填“充分不必要”、“必要不充分”、“充要”“或”“既不充分也不必要”).14.如图,以长方体的顶点为坐标原点,过的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为,则的坐标为________15.若C9x=16.对于定义域为的函数,若满足①;②当,且时,都有;③当,且时,都有,则称为“偏对称函数”.现给出四个函数:①;②;③;④.则其中是“偏对称函数”的函数序号为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论的单调性;(2)若恒成立,求的取值范围.18.(12分)已知函数,(为自然对数的底数,).(1)判断曲线在点处的切线与曲线的公共点个数;(2)当时,若函数有两个零点,求的取值范围.19.(12分)4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个小组中随机抽取10名学生参加问卷调查.各组人数统计如下:(1)从参加问卷调查的10名学生中随机抽取两名,求这两名学生来自同一个小组的概率;(2)在参加问卷调查的10名学生中,从来自甲、丙两个小组的学生中随机抽取两名,用表示抽得甲组学生的人数,求的分布列和数学期望.20.(12分)已知.(1)讨论的单调性;(2)若,求实数的取值范围.21.(12分)已知的展开式中前三项的系数成等差数列.(1)求展开式的二项式系数的和;(2)求展开式中含的项.22.(10分)已知函数f(x)=ex,g(x)=lnx.(1)设f(x)在x1处的切线为l1,g(x)在x2处的切线为l2,若l1//l2,求x1+g(x2)的值;(2)若方程af2(x)-f(x)-x=0有两个实根,求实数a的取值范围;(3)设h(x)=f(x)(g(x)-b),若h(x)在[ln2,ln3]内单调递减,求实数b的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
逐一对每个选项进行判断,得到答案.【详解】①,设函数,递减,,即,正确②,设函数,在递增,在递减,,即,正确③,由②知,设函数,在递减,在递增,,即正确答案为B【点睛】本题考查了利用导函数求函数的单调性进而求最值来判断不等式关系,意在考查学生的计算能力.2、D【解析】分析:根据题意,求出双曲线的渐近线方程,再根据焦点到渐近线的距离为,求得双曲线的参数,即可确定双曲线方程.详解:圆,圆心,原点在圆上,直线的斜率又双曲线的一条渐近线恰好是圆切线,双曲线的一条渐近线方程的斜率为,一条渐近线方程为,且,即由题可知,双曲线的一个焦点到渐近线的距离,解得又有,可得,,双曲线的方程为.故选D.点睛:本题考查双曲线的简单性质的应用,双曲线方程的求法,直线与圆位置关系和点到直线距离的求法,考查计算能力.3、B【解析】
模拟程序,依次写出各步的结果,即可得到所求输出值.【详解】程序的起始为第一次变为第二次变为第三次变为第四次变为满足条件可得故选:B.【点睛】本题考查程序框图中的循环结构,难度较易.4、D【解析】
建立空间直角坐标系,结合直线的方向向量确定异面直线所成的角即可.【详解】以点A为坐标原点,建立如图所示的空间直角坐标系,设,则,据此可得:,,故,即直线PQ与AM所成的角是.本题选择D选项.【点睛】本题主要考查空间向量的应用,异面直线所成的角的求解等知识,意在考查学生的转化能力和计算求解能力.5、A【解析】因,故当时,函数单调递增,应选答案A。6、A【解析】
确定两个命题和的真假可得.【详解】∵a,b均为正实数,若,则,命题为真;若,满足,但,故为假命题.因此“”是“”的充分不必要条件.故选:A.【点睛】本题考查充分必要条件的判断.解题时必须根据定义确定命题和的真假.也可与集合包含关系联系.7、B【解析】分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论.解:最左端排甲,共有=120种,最左端只排乙,最右端不能排甲,有=96种,根据加法原理可得,共有120+96=216种.故选B.8、D【解析】
按照补集、交集的定义,即可求解.【详解】,,.
故选:D.【点睛】本题考查集合的混合计算,属于基础题.9、B【解析】
先判断函数奇偶性,再根据存在多个零点导致存在多个零点,即可判断出结果.【详解】∵,∴为奇函数,且存在多个零点导致存在多个零点,故的图像应为含有多个零点的奇函数图像.故选B.【点睛】本题主要考查函数图像的识别,熟记函数性质即可,属于常考题型.10、D【解析】四个函数图象,分别对应甲指数函数,乙对数函数,丙幂函数,丁正比例函数;而满足①是正比例函数;②是指数函数;③是对数函数;④是幂函数,所以匹配方案是①—丁②—甲③—乙④—丙,选D。11、A【解析】
分相同数字为1,与不为1,再由分类计数原理求出答案。【详解】相同数不为1时,四位数的个位数是1,其他3个相同的数可能是2,3,4,5共4种相同数为1时,四位数的个位数是1,在2,3,4,5中选一个数放在十位或百位或千位上,共有种则共有种故选A【点睛】本题考查排列组合,分类计数原理,属于基础题。12、B【解析】
事件“第一次投进球”和“第二次投进球”是相互独立的,利用对立事件和相互独立事件可求“其中一名同学得2分”的概率.【详解】设“第一次投进球”为事件,“第二次投进球”为事件,则得2分的概率为.故选B.【点睛】本题考查对立事件、相互独立事件,注意互斥事件、对立事件和独立事件三者之间的区别,互斥事件指不同时发生的事件,对立事件指不同时发生的事件且必有一个发生的两个事件,而独立事件指一个事件的发生与否与另一个事件没有关系.二、填空题:本题共4小题,每小题5分,共20分。13、必要不充分【解析】
根据直二面角的定义、面面垂直的判定理、充分性、必要性的定义可以直接判断.【详解】构成直二面角,说明平面互相垂直,但是不一定成立,比如这两个相交平面的交线显然是平面内的一条直线,它就不垂直于平面;当时,为平面内的一条直线,由面面垂直的判定定理可知:互相垂直,因此构成直二面角,故由可以推出构成直二面角,故“构成直二面角”是“”的必要不充分条件.故答案为:必要不充分【点睛】本题考查了必要不充分条件的判断,考查了面面垂直的判定定理.14、【解析】如图所示,以长方体的顶点为坐标原点,过的三条棱所在直线为坐标轴,建立空间直角坐标系,因为的坐标为,所以,所以.15、3或4【解析】
结合组合数公式结合性质进行求解即可.【详解】由组合数的公式和性质得x=2x﹣3,或x+2x﹣3=9,得x=3或x=4,经检验x=3或x=4都成立,故答案为:3或4.【点睛】本题主要考查组合数公式的计算,结合组合数的性质建立方程关系是解决本题的关键.16、①④.【解析】分析:条件②等价于f(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,条件③等价于f(x)﹣f(﹣x)<0在(﹣∞,0)上恒成立,依次判断各函数是否满足条件即可得出结论.详解:由②可知当x>0时,f′(x)>0,当x<0时,f′(x)<0,∴f(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,f2(x)=ln(﹣x)=ln,∴f2(x)在R上单调递减,不满足条件②,∴f2(x)不是“偏对称函数”;又()=()=0,∴(x)在(0,+∞)上不单调,故(x)不满足条件②,∴(x)不是“偏对称函数”;又f2(x)=ln(﹣x)=ln,∴f2(x)在R上单调递减,不满足条件②,∴f2(x)不是“偏对称函数”;由③可知当x1<0时,f(x1)<f(﹣x2),即f(x)﹣f(﹣x)<0在(﹣∞,0)上恒成立,对于(x),当x<0时,(x)﹣(﹣x)=﹣x﹣e﹣x+1,令h(x)=﹣x﹣e﹣x+1,则h′(x)=﹣1+e﹣x>0,∴h(x)在(﹣∞,0)上单调递增,故h(x)<h(0)=0,满足条件③,由基本初等函数的性质可知(x)满足条件①,②,∴(x)为“偏对称函数”;对于f4(x),f4′(x)=2e2x﹣ex﹣1=2(ex﹣)2﹣,∴当x<0时,0<ex<1,∴f4′(x)<2(1﹣)2﹣=0,当x>0时,ex>1,∴f4′(x)>2(1﹣)2﹣=0,∴f4(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,满足条件②,当x<0,令m(x)=f4(x)﹣f4(﹣x)=e2x﹣e﹣2x+e﹣x﹣ex﹣2x,则m′(x)=2e2x+2e﹣2x﹣e﹣x﹣ex﹣2=2(e2x+e﹣2x)﹣(e﹣x+ex)﹣2,令e﹣x+ex=t,则t≥2,于是m′(x)=2t2﹣t﹣6=2(t﹣)2﹣≥2(2﹣)2﹣=0,∴m(x)在(﹣∞,0)上单调递增,∴m(x)<m(0)=0,故f4(x)满足条件③,又f4(0)=0,即f4(x)满足条件①,∴f4(x)为“偏对称函数”.故答案为:①④.点睛:本题以新定义“偏对称函数”为背景,考查了函数的单调性及恒成立问题的处理方法,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】
(1)求出,分或两种情况讨论(2)由,得恒成立,则恒成立,然后利用导数求出右边的最大值即可【详解】解:(1)易知,,(i)当时对任意的恒成立;(ⅱ)当时,若,得若,得,综上,当时在上单调递增;当时,在上单调递增,在上单调递减.(2)由,得恒成立,则恒成立,令,,则令,,则,∴在上单调递减,又∵,∴在上,即;在上,即,∴在上单调递增,在上单调递减,∴,故,即的取值范围为.【点睛】恒成立问题首选的方法是通过分离变量,转化为最值问题.18、(1)见解析(2)【解析】分析:(1)根据导数的几何意义可得切线方程,然后根据切线方程与联立得到的方程组的解的个数可得结论.(2)由题意求得的解析式,然后通过分离参数,并结合函数的图象可得所求的范围.详解:(1)∵,∴,∴.又,∴曲线在点处的切线方程为.由得.故,所以当,即或时,切线与曲线有两个公共点;当,即或时,切线与曲线有一个公共点;当,即时,切线与曲线没有公共点.(2)由题意得,由,得,设,则.又,所以当时,单调递减;当时,单调递增.所以.又,,结合函数图象可得,当时,方程有两个不同的实数根,故当时,函数有两个零点.点睛:函数零点个数(方程根的个数、两函数图象公共点的个数)的判断方法:(1)结合零点存在性定理,利用函数的性质确定函数零点个数;(2)构造合适的函数,判断出函数的单调性,利用函数图象公共点的个数判断方程根的个数或函数零点个数.19、(1);(2)答案见解析.【解析】试题分析:(1)从参加问卷调查的10名学生中随机抽取两名的取法共有种,来自同一小组的取法共有,所以.(2)的可能取值为0,1,2,,,,写出分布列,求出期望.试题解析:(1)由已知得,问卷调查中,从四个小组中抽取的人数分别为3,4,2,1,从参加问卷调查的10名学生中随机抽取两名的取法共有种,这两名学生来自同一小组的取法共有,所以.(2)由(1)知,在参加问卷调查的10名学生中,来自甲、丙两小组的学生人数分别为3,2.的可能取值为0,1,2,,,.∴的分布列为:.20、(Ⅰ)详见解析;(Ⅱ).【解析】试题分析:(Ⅰ)由函数的解析式可得,当时,,在上单调递增;当时,由导函数的符号可知在单调递减;在单调递增.(Ⅱ)构造函数,问题转化为在上恒成立,求导有,注意到.分类讨论:当时,不满足题意.当时,,在上单调递增;所以,满足题意.则实数的取值范围是.试题解析:(Ⅰ),当时,,.∴在上单调递增;当时,由,得.当时,;当时,.所以在单调递减;在单调递增.(Ⅱ)令,问题转化为在上恒成立,,注意到.当时,,,因为,所以,,所以存在,使,当时,,递减,所以,不满足题意.当时,,当时,,,所以,在上单调递增;所以,满足题意.综上所述:.21、(1);(2)【解析】
列出二项展开式的通项公式,利用前三项系数成等差可求得;(1)根据展开式二项式系数和的性质可得结果;(2)根据展开式通项公式可知,当时为所求项,代入通项公式求得结果.【详解】二项展开式的通项公式为:展开式前三项的系数依次为,,,整理可得:解得:(舍)或二项展开式的通项公式为:(1)二项展开式的二项式系数的和为:(2)令,解得:展开式中含的项为【点睛】本题考查组合数的运算、二项展开式二项式系数和的性质、求指定项的问题,考查对于二项式定理的知识的掌握,属于常规题型.22、(1)0.(2)0<a<1.(3)b≥ln2+.【解析】分析:(1)求导,利用l1//l2时k值相等,即可求出答案;(2)参变分离,利用导数的应用以及数形结合即可得到答案;(3)由题意h(x)=f(x)(g(x)-b)=ex(lnx-b),求导,因为h(x)在[ln2,ln3]内单调递减,所以在[ln2,ln3]上恒成立,再参变分离,分析讨论即可.详解:(1)f′(x)=ex,g′(x)=由题意知:=故x1+g(x2)=x1-ln=0.(2)方程af2(x)-f(x)-x=0,ae2x-ex-x=0,a=令φ(x)=,则φ′(x)=-当x<0时,ex<1,ex-1<0,所以ex+2x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版本地合作协议标准格式版B版
- 2024年股东权益保护与承诺协议
- 2024建房安全合同协议书建房安全合同
- 2025版酒店加盟品牌运营与推广合同范本3篇
- 2025版文化产业园开业庆典合同样本3篇
- 2024年电子合同法律效力研究
- 2025版居间合同范本(全新版)9篇
- 2024年综合安全监控布局施工协议条款版B版
- 课题申报书:大学生学术思维能力培育研究
- 2025版房地产投资贷款合同房地产金融产品范本3篇
- 【9道期末】安徽省宣城市2023-2024学年九年级上学期期末道德与法治试题(含解析)
- 2024年医药行业年终总结.政策篇 易联招采2024
- 《工程造价专业应用型本科毕业设计指导标准》
- 仓库主管2025年终总结及2025工作计划
- 2024年01月11396药事管理与法规(本)期末试题答案
- 《临床带教实施要求》课件
- 2023年内蒙古兴安盟事业单位秋专项人才引进笔试真题
- 2024年保安员(初级)试题及答案
- 侦查学期末考试试题及答案
- 蔬菜采购框架合同模板
- 中国类风湿关节炎诊疗指南(2024版)解读
评论
0/150
提交评论