2022-2023学年云南省丽江市数学高二第二学期期末质量跟踪监视模拟试题含解析_第1页
2022-2023学年云南省丽江市数学高二第二学期期末质量跟踪监视模拟试题含解析_第2页
2022-2023学年云南省丽江市数学高二第二学期期末质量跟踪监视模拟试题含解析_第3页
2022-2023学年云南省丽江市数学高二第二学期期末质量跟踪监视模拟试题含解析_第4页
2022-2023学年云南省丽江市数学高二第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某班共有52人,现根据学生的学号,用系统抽样的方法抽取一个容量为4的样本.已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是()A.10 B.11 C.12 D.162.已知单位向量的夹角为,若,则为()A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形3.已知三棱锥的顶点都在球的球面上,平面,则球的表面积为()A. B. C. D.4.如图是导函数的图象,则的极大值点是()A. B. C. D.5.已知复数,则复数在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.在的展开式中,项的系数为().A. B. C. D.7.复数的虚部是()A.1 B.﹣i C.i D.﹣18.已知展开式中常数项为1120,实数是常数,则展开式中各项系数的和是A. B. C. D.9.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直分别为直角三角形的斜边,直角边,.若,,在整个图形中随机取一点,则此点取自阴影部分的概率为()()A. B.C. D.10.已知点在抛物线的准线上,为的焦点,过点的直线与相切于点,则的面积为()A.1 B.2 C. D.411.函数的图象大致是A. B. C. D.12.已知的展开式中,含项的系数为70,则实数a的值为()A.1 B.-1 C.2 D.-2二、填空题:本题共4小题,每小题5分,共20分。13.浙江省现行的高考招生制度规定除语、数、英之外,考生须从政治、历史、地理、物理、化学、生物、技术这7门高中学考科目中选择3门作为高考选考科目,成绩计入高考总分.已知报考某高校、两个专业各需要一门科目满足要求即可,专业:物理、化学、技术;专业:历史、地理、技术.考生小李今年打算报考该高校这两个专业的选考方式有______种.(用数字作答)14.若不等式|x-a|<1的解集为{x|1<x<3},则实数a的值为________.15.观察下列等式:照此规律,则第五个等式应为________________.16.将极坐标化成直角坐标为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)求二项式的展开式中项系数最大的项的系数.18.(12分)(本小题满分12分)某居民小区有两个相互独立的安全防范系统(简称系统)和,系统和在任意时刻发生故障的概率分别为和。(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为,求的值;(Ⅱ)设系统在3次相互独立的检测中不发生故障的次数为随机变量,求的概率分布列及数学期望。19.(12分)已知函数在其定义域内有两个不同的极值点.(1)求的取值范围;(2)试比较与的大小,并说明理由;(3)设的两个极值点为,证明.20.(12分)已知函数g(x)=(x+1)(Ⅰ)求g(x)的单调区间;(Ⅱ)设f(x)=xlnx-1e21.(12分)(.在一次购物抽奖活动中,假设某10张券中有一等奖奖券1张,可获价值50元的奖品;有二等奖奖券3张,每张可获价值10元的奖品;其余6张没奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X(元)的概率分布列.22.(10分)在以直角坐标原点为极点,轴的正半轴为极轴的极坐标系中,已知点到直线的距离为.(1)求实数的值;(2)设是直线上的动点,点在线段上,且满足,求点轨迹的极坐标方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

由题计算出抽样的间距为13,由此得解.【详解】由题可得,系统抽样的间距为13,则在样本中.故选D【点睛】本题主要考查了系统抽样知识,属于基础题.2、C【解析】,,与夹角为,且,为直角三角形,故选C.3、D【解析】

根据题意画出图形,结合图形把三棱锥补充为长方体,则该长方体的外接球即为三棱锥的外接球,计算长方体的对角线,求出外接球的直径和表面积.【详解】根据题意画出图形,如图所示,

以AB、BD和CD为棱,把三棱锥补充为长方体,

则该长方体的外接球即为三棱锥的外接球,

且长方体的对角线是外接球的直径;

外接球O的表面积为.

故选:D.【点睛】本题考查了三棱锥外接球表面积计算问题,将三棱锥补成长方体,是求外接球直径的关键,属于中档题.4、B【解析】

根据题意,有导函数的图象,结合函数的导数与极值的关系,分析可得答案.【详解】根据题意,由导函数的图象,,并且,,,在区间,上为增函数,,,,在区间,上为减函数,故是函数的极大值点;故选:.【点睛】本题考查函数的导数与单调性、极值的关系,注意函数的导数与极值的关系,属于基础题.5、D【解析】因为,所以复数在复平面内对应的点为,在第四象限,选D.6、A【解析】二项式展开式的通项为。所以展开式中项的系数为.选.7、D【解析】

利用复数的运算法则、虚部的定义即可得出.【详解】解:∵复数,∴复数的虚部是﹣1,故选:D.【点睛】本题考查了复数的运算法则、虚部的定义,属于基础题.8、C【解析】分析:由展开式通项公式根据常数项求得,再令可得各项系数和.详解:展开式通项为,令,则,∴,,所以展开式中各项系数和为或.故选C.点睛:赋值法在求二项展开式中系数和方面有重要的作用,设展开式为,如求所有项的系数和可令变量,即系数为,而奇数项的系数和为,偶数项系数为,还可以通过赋值法证明一些组合恒等式.9、D【解析】

首先计算出图形的总面积以及阴影部分的面积,再根据几何概型的概率计算公式计算可得.【详解】解:因为直角三角形的斜边为,,,所以,以为直径的圆面积为,以为直径的圆面积为,以为直径的圆面积为.所以图形总面积,,所以.故选:【点睛】本题考查面积型几何概型的概率计算问题,属于基础题.10、B【解析】

根据题中条件可得到抛物线方程,由直线和抛物线相切得到切点N的坐标,进而求得面积.【详解】点在抛物线的准线上,可得到p=2,方程为:,切点N(x,y),满足,过点的直线设为和抛物线联立得到,,取k=1,此时方程为的面积为:故答案为:B.【点睛】这个题目考查了直线和抛物线的位置关系,当直线和抛物线相切时,可以联立直线和抛物线,使得判别式等于0,也可以设出切点坐标求导得到该点处的斜率.11、D【解析】

利用函数的奇偶性、特殊值判断函数图象形状与位置即可.【详解】函数y=是奇函数,所以选项A,B不正确;当x=10时,y=>0,图象的对应点在第一象限,D正确;C错误.故选D.【点睛】本题考查函数的图象的判断,一般利用函数的定义域、值域、奇偶性、单调性、对称性、特殊值等方法判断.12、A【解析】

分析:由题意结合二项式展开式的通项公式得到关于a的方程,解方程即可求得实数a的值.详解:展开式的通项公式为:,由于,据此可知含项的系数为:,结合题意可知:,解得:.本题选择A选项.点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.二、填空题:本题共4小题,每小题5分,共20分。13、27;【解析】

根据题意,分四种情况讨论即可,最终将每种情况的个数加到一起.【详解】根据题意得到分情况:当考生选择技术时,两个专业均可报考,再从剩下的6门课中选择两科即可,方法有种;当学生不选技术时,可以从物理化学中选择一科,再从历史,地理选一科,最后从政治生物中选择一科,有种方法;当学生同时选物理化学时,还需要选择历史,地理中的一科,有2中选择,当学生同时选择历史,地理时,需要从物理化学中再选择一科,也有2种方法,共有4种;最终加到一起共有:15+8+4=27种.故答案为:27.【点睛】(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解.14、2.【解析】分析:由题意可得,1和3是方程|x-a|=1的根,代入即可.详解:由题意可得,1和3是方程|x-a|=1的根,则有解得a=2.故答案为:2.点睛:本题考查绝对值不等式的解法,考查等价转化思想与方程思想的应用.15、【解析】

左边根据首数字和数字个数找规律,右边为平方数,得到答案.【详解】等式左边:第排首字母为,数字个数为等式右边:第五个等式应为:故答案为:【点睛】本题考查了找规律,意在考查学生的应用能力.16、【解析】

试题分析:由题意得,,所以直角坐标为故答案为:考点:极坐标与直角坐标的互化.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、或【解析】

根据题意,求出的展开式的通项,求出其系数,设第项的系数最大,则有,解可得的值,代入通项中计算可得答案.【详解】解:根据题意,的展开式的通项为,其系数为,设第项的系数最大,则有,即解可得:,故当或时,展开式中项系数最大,则有,;即系数最大的项的系数为或.【点睛】本题考查二项式定理的应用,注意项的系数与二项式系数的区别,属于基础题.18、(1);(2)E=0.【解析】(1)设:“至少有一个系统不发生故障”为事件C,那么1-P(C)=1-P=,解得P=………………4分(2)由题意,P(=0)=[来源:Z+xx+k.Com]P(=1)=P(=2)=P(=3)=所以,随机变量的概率分布列为:0123 P故随机变量X的数学期望为:E=0……12分.[点评]本小题主要考查相互独立事件,独立重复试验、互斥事件、随机变量的分布列、数学期望等概念及相关计算,考查运用概率知识与方法解决实际问题的能力.19、(1);(2);理由见解析;(3)证明见解析【解析】

(1)根据函数在定义域内有两个不同极值点可知方程有两个不等正根,将问题转化为与在上有两个不同交点;利用过一点曲线的切线的求解方法可求出过原点与相切的直线的斜率,从而可得,解不等式求得结果;(2)令,求导后可知在上单调递减,从而可得,化简可得;(3)易知是方程的两根,令,可整理得到,从而将所证不等式化为,采用换元的方式可知只需证,恒成立;构造函数,,利用导数可知在上单调递增,可得,进而证得结论.【详解】(1)由题意得:定义域为;在上有两个不同极值点等价于方程有两个不等正根即:与在有两个不同的交点设过的的切线与相切于点则切线斜率,解得:过的的切线的斜率为:,解得:即的取值范围为:(2)令,则时,;时,在上单调递增;在上单调递减,即:即:(3)由(1)知,是方程的两根即:,设,则原不等式等价于:即:设,则,只需证:,设,在上单调递增即在上恒成立所证不等式成立【点睛】本题考查导数在研究函数中的应用,涉及到根据极值点个数求解参数范围、通过构造函数的方式比较大小、利用导数证明不等式的问题;利用导数证明不等式的关键是能够将所证不等式转化为与两个极值点有关的函数的最值的求解问题,通过求解最值可确定不等关系.20、(1)g(x)在(0,+∞)上单调递增(2)见解析【解析】

(Ⅰ)求出函数的导数,根据导函数的单调性判断即可;(Ⅱ)求出函数的导数,结合函数的零点以及函数的最值确定M的范围即可.【详解】(Ⅰ)g'(x)=lnx+1+1x,所以h(x)在(0,1)上单调递减,在h(x)min=h(1)=2>0,即g'(x)>0,所以(Ⅱ)f'(x)=e-x+F'(x)=-1exG'(x)=ex-1>0,所以G(x)G(x)>G(0)=1>0,即F'(x)>0,所以F(x)在(0,+∞)上单调递增F(e-1)=>0所以F(x)在(0,+∞)上恰有一个零点x0∈(f(x)在(0,x0)M=f(x0由(Ⅰ)知f(x0)所以-2e2【点睛】本题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,是一道综合题.21、(1);(2)分布列见解析.【解析】

⑴运用古典概率方法,从有奖的4张奖券中抽到了1张或2张算出答案依题意可知,的所有可能取值为,用古典概型分别求出概率,列出分布列【详解】(1)该顾客中奖,说明是从有奖的4张奖券中抽到了1张或2张,由于是等可能地抽取,所以该顾客中奖的概率P=.(或用间接法,P=1-).(2)依题意可知,X的所有可能取值为0,10,20,50,60(元),且P(X=0)=,P(X=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论