版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,是两个不同的平面,,是异面直线且,则下列条件能推出的是()A., B., C., D.,2.椭圆C:x24+y23=1的左右顶点分别为AA.[12,34]3.在数学兴趣课堂上,老师出了一道数学思考题,某小组的三人先独立思考完成,然后一起讨论.甲说:“我做错了!”乙对甲说:“你做对了!”丙说:“我也做错了!”老师看了他们三人的答案后说:“你们三人中有且只有一人做对了,有且只有一人说对了.”请问下列说法正确的是()A.乙做对了 B.甲说对了 C.乙说对了 D.甲做对了4.已知经过,两点的直线AB与直线l垂直,则直线l的倾斜角是()A.30° B.60° C.120° D.150°5.在掷一枚图钉的随机试验中,令,若随机变量X的分布列如下:010.3则()A.0.21 B.0.3 C.0.5 D.0.76.设函数的定义域,函数y=ln(1-x)的定义域为,则A.(1,2) B.(1,2] C.(-2,1) D.[-2,1)7.广告投入对商品的销售额有较大影响,某电商对连续5个年度的广告费和销售额进行统计,得到统计数据如下表(单位:万元)广告费23456销售额2941505971由上表可得回归方程为,据此模型,预测广告费为10万元时销售额约为()A.118.2万元 B.111.2万元 C.108.8万元 D.101.2万元8.已知为虚数单位,则复数对应复平面上的点在第()象限.A.一 B.二 C.三 D.四9.甲射击时命中目标的概率为,乙射击时命中目标的概率为,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为()A. B. C. D.10.设等差数列的前n项和为,若,则()A.3 B.4 C.5 D.611.对于复数,给出下列三个运算式子:(1),(2),(3).其中正确的个数是()A. B. C. D.12.可表示为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则曲线在处的切线方程为_____14.在处的导数值是___________.15.以下四个关于圆锥曲线命题:①“曲线为椭圆”的充分不必要条件是“”;②若双曲线的离心率,且与椭圆有相同的焦点,则该双曲线的渐近线方程为;③抛物线的准线方程为;④长为6的线段的端点分别在、轴上移动,动点满足,则动点的轨迹方程为.其中正确命题的序号为_________.16.函数的值域为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图如图所示,支持“延迟退休年龄政策”的人数与年龄的统计结果如表:年龄(岁)支持“延迟退休年龄政策”人数155152817(I)由以上统计数据填写下面的列联表;年龄低于45岁的人数年龄不低于45岁的人数总计支持不支持总计(II)通过计算判断是否有的把握认为以45岁为分界点的不同人群对“延迟退休年龄政策”的态度有差异.0.1000.0500.0100.0012.7063.8416.63510.828参考公式:18.(12分)设函数.(1)求的单调区间;(2)求使对恒成立的的取值范围.19.(12分)甲、乙两企业生产同一种型号零件,按规定该型号零件的质量指标值落在内为优质品.从两个企业生产的零件中各随机抽出了件,测量这些零件的质量指标值,得结果如下表:甲企业:分组频数5乙企业:分组频数55(1)已知甲企业的件零件质量指标值的样本方差,该企业生产的零件质量指标值X服从正态分布,其中μ近似为质量指标值的样本平均数(注:求时,同一组中的数据用该组区间的中点值作代表),近似为样本方差,试根据企业的抽样数据,估计所生产的零件中,质量指标值不低于的产品的概率.(精确到)(2)由以上统计数据完成下面列联表,并判断能否在犯错误的概率不超过的前提下认为两个企业生产的零件的质量有差异.甲厂乙厂总计优质品非优质品总计附:参考数据:,参考公式:若,则,,;20.(12分)已知椭圆的离心率为,点为椭圆上一点.(1)求椭圆C的方程;(2)已知两条互相垂直的直线,经过椭圆的右焦点,与椭圆交于四点,求四边形面积的的取值范围.21.(12分)已知函数.(1)判断的奇偶性并予以证明;(2)求不等式的解集.22.(10分)用0,1,2,3,4五个数字组成五位数.(1)求没有重复数字的五位数的个数;(2)求没有重复数字的五位偶数的个数.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分析:根据线面垂直的判定定理求解即可.详解:A.,,此时,两平面可以平行,故错误;B.,,此时,两平面可以平行,故错误;C.,,此时,两平面仍可以平行,故错误,故综合的选D.点睛:考查线面垂直的判定,对答案对角度,多立体的想象摆放图形是解题关键,属于中档题.2、B【解析】设P点坐标为(x0,y0),则于是kPA1∵kPA2【考点定位】直线与椭圆的位置关系3、B【解析】
分三种情况讨论:甲说法对、乙说法对、丙说法对,通过题意进行推理,可得出正确选项.【详解】分以下三种情况讨论:①甲的说法正确,则甲做错了,乙的说法错误,则甲做错了,丙的说法错误,则丙做对了,那么乙做错了,合乎题意;②乙的说法正确,则甲的说法错误,则甲做对了,丙的说法错误,则丙做对了,矛盾;③丙的说法正确,则丙做错了,甲的说法错误,则甲做对了,乙的说法错误,则甲做错了,自相矛盾.故选:B.【点睛】本题考查简单的合情推理,解题时可以采用分类讨论法进行假设,考查推理能力,属于中等题.4、B【解析】
首先求直线的斜率,再根据两直线垂直,求直线的斜率,以及倾斜角.【详解】,,,直线l的倾斜角是.故选B.【点睛】本题考查了两直线垂直的关系,以及倾斜角和斜率的基本问题,属于简单题型.5、D【解析】
先由概率和为1,求出,然后即可算出【详解】因为,所以所以故选:D【点睛】本题考查的是离散型随机变量的分布列的性质及求由分布列求期望,较简单.6、D【解析】由得,由得,故,选D.【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.7、B【解析】分析:平均数公式可求出与的值,从而可得样本中心点的坐标,代入回归方程求出,再将代入回归方程得出结论.详解:由表格中数据可得,,,解得,回归方程为,当时,,即预测广告费为10万元时销售额约为,故选B.点睛:本题考查了线性回归方程的性质与数值估计,属于基础题.回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.8、D【解析】分析:首先化简所给的复数,然后确定复数所在的象限即可.详解:由题意可得:,则复数对应的点为,该点位于第四象限,即复数对应复平面上的点在第四象限.本题选择D选项.点睛:本题主要考查复数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.9、D【解析】
记事件甲乙两人各自射击同一目标一次,该目标被击中,利用独立事件的概率乘法公式计算出事件的对立事件的概率,再利用对立事件的概率公式可得出事件的概率.【详解】记事件甲乙两人各自射击同一目标一次,该目标被击中,则事件甲乙两人各自射击同一目标一次,两人都未击中目标,由独立事件的概率乘法公式得,,故选D.【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,可以采用分类讨论,本题采用对立事件求解,可简化分类讨论,属于中等题.10、C【解析】
由又,可得公差,从而可得结果.【详解】是等差数列又,∴公差,,故选C.【点睛】本题主要考查等差数列的通项公式与求和公式的应用,意在考查灵活应用所学知识解答问题的能力,属于中档题.11、D【解析】分析:根据复数的几何意义可得(1)正确;根据复数模的公式计算可得到(2)正确;根据复数乘法运算法则可判断(3)正确,从而可得结果.详解:根据复数的几何意义,由三角形两边之和大于第三边可得,(1)正确;设,则,,(2)正确;根据复数乘法的运算法则可知,(3)正确,即正确命题的个数是,故选D.点睛:本题主要考查复数模的公式、复数的几何意义、复数乘法的运算法则,意在考查基础知识掌握的熟练程度,以及综合运用所学知识解决问题的能力,属于难题.12、B【解析】
根据排列数的定义可得出答案.【详解】,故选B.【点睛】本题考查排列数的定义,熟悉排列数公式是解本题的关键,考查理解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用导数的几何意义,求出切线斜率,由点斜式即可求得切线方程。【详解】因为,所以,切点坐标为,故切线方程为:即。【点睛】本题主要考查利用导数的几何意义求函数曲线在某点处的切线方程。14、【解析】
利用导数的运算法则及导数的公式求出导函数,再令导函数中的,即可求出导数值.【详解】因为函数所以所以在处的导数值是,故答案为.【点睛】本题主要考查导数的运算法则以及基本初等函数的导数,属于简单题.求函数的导数值时,先根据函数的形式选择合适的导数运算法则及导数公式,再求导数值.15、③④【解析】
对于①,求出“曲线为椭圆”的充要条件,判断与“”关系,即得①的正误;对于②,根据已知条件求出双曲线的方程,从而求出渐近线方程,即得②的正误;对于③,把抛物线的方程化为标准式,求出准线方程,即得③的正误;对于④,设,根据,可得,代入,求出动点的轨迹方程,即得④的正误.【详解】对于①,“曲线为椭圆”的充要条件是“且”.所以“曲线为椭圆”的必要不充分条件是“”,故①错误;对于②,椭圆的焦点为,又双曲线的离心率,所以双曲线的方程为,所以双曲线的渐近线方程为,故②错误;对于③,抛物线的方程化为标准式,准线方程为,故③正确;对于④,设,,,即,即动点的轨迹方程为.故④正确.故答案为:③④.【点睛】本题考查充分必要条件、圆锥曲线的性质和求轨迹方程的方法,属于中档题.16、【解析】
利用导数求出函数的单调性,由单调性即可得出值域.【详解】当,当所以函数在区间上单调递增,在区间上单调递减则即函数的值域为故答案为:【点睛】本题主要考查了利用导数求函数的值域,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I)列联表见解析;(II)有.【解析】
(I)先根据频率分布直方图算出各数据,再结合支持“延迟退休年龄政策”的人数与年龄的统计结表求解;(II)算出观测值与3.841比较.【详解】(I)由统计数据填写的列联表如下:年龄低于45岁的人数年龄不低于45岁的人数总计支持354580不支持15520总计5050100(II)计算观测值,有的把握认为以45岁为分界点的同人群对“延迟退休年龄政策”的态度有差异.【点睛】本题考查频率分布直方图与独立性检验.18、(1)见解析;(2)【解析】
(1)求导后得,再对分三种情况讨论可得;(2)先由,解得,从而由(1)可得在上为增函数,再将恒成立转化为可解得.【详解】(1)因为,其中,所以.所以,时,所以的单调递增区间为,单调递减区间为;时,所以的单调递减区间为;时,所以的单调递增区间为,单调递减区间为;(2)由题意得,即.由(1)知在内单调递增,要使对恒成立.只要解得.故的取值范围是.【点睛】本题考查了利用导数求函数的单调区间,用导数研究不等式恒成立问题,属中档题.19、(1);(2)列联表见解析,能在犯错误的概率不超过的前提下认为两个企业生产的产品的质量有差异.【解析】
(1)计算甲企业的平均值,得出甲企业产品的质量指标值,计算所求的概率值;(2)根据统计数据填写列联表,计算,对照临界值表得出结论.【详解】(1)依据上述数据,甲厂产品质量指标值的平均值为:,所以,,即甲企业生产的零件质量指标值X服从正态分布,又,则,,,所以,甲企业零件质量指标值不低于的产品的概率为.(2)列联表:甲厂乙厂总计优质品非优质品总计计算∴能在犯错误的概率不超过的前提下认为两个企业生产的产品的质量有差异.【点睛】本题主要考查了独立性检验与正态分布的特点及概率求解问题,是基础题.20、(1);(2)【解析】
(1)由题意可得,解得进而得到椭圆的方程;(2)设出直线l1,l2的方程,直线和椭圆方程联立,运用韦达定理和弦长公式,分别求得|AB|,|MN|,再由四边形的面积公式,化简整理计算即可得到取值范围.【详解】(1)由题意可得,解得a2=4,b2=3,c2=1故椭圆C的方程为;(2)当直线l1的方程为x=1时,此时直线l2与x轴重合,此时|AB|=3,|MN|=4,∴四边形AMBN面积为S|AB|•|MN|=1.设过点F(1,0)作两条互相垂直的直线l1:x=ky+1,直线l2:xy+1,由x=ky+1和椭圆1,可得(3k2+4)y2+1ky﹣9=0,判别式显然大于0,y1+y2,y1y2,则|AB|••,把上式中的k换为,可得|MN|则有四边形AMBN面积为S|AB|•|MN|••,令1+k2=t,则3+4k2=4t﹣1,3k2+4=3t+1,则S,∴t>1,∴01,∴y=﹣()2,在(0,)上单调递增,在(,1)上单调递减,∴y∈(12,],∴S∈[,1)故四边形PMQN面积的取值范围是【点睛】本题考查直线和椭圆的位置关系,同时考查直线椭圆截得弦长的问题,以及韦达定理是解题的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现浇钢筋混凝土课程设计
- 2024年度田土承包经营权租赁与农产品加工合同3篇
- 2024年特定医疗服务授权代理协议版B版
- 投标主体诚信承诺书(7篇)
- 我的前半生看后感言
- 2025年山东济宁梁山县公开招聘县属国企业高级经营管理人员管理单位笔试遴选500模拟题附带答案详解
- 2025年山东济宁市兖州区事业单位招聘工作人员(教育类)166人历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东济南市历城区事业单位招聘工作人员59人历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东泰安市岱岳区直事业单位招考管理单位笔试遴选500模拟题附带答案详解
- 2025年山东枣庄滕州市事业单位招聘工作人员60人历年管理单位笔试遴选500模拟题附带答案详解
- 数据管理制度完整
- 医疗组长竞聘
- 防止食品安全传染病
- 3外架专项施工方案
- 工程施工日志60篇
- 期末复习试题 (试卷)-2024-2025学年四年级上册数学人教版
- 电梯日管控、周排查、月调度内容表格
- 学生厌学不愿上课协议书范文
- 2024年版移动通信基站专用房屋及土地租赁合同
- 自行车被盗案汇报课件
- 钻井与完井工程-第一章-钻井与完井工程概述
评论
0/150
提交评论