版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在的展开式中,系数为有理数的系数为A.336项 B.337项 C.338项 D.1009项2.下列不等式成立的是()A. B. C. D.3.某次战役中,狙击手A受命射击敌机,若要击落敌机,需命中机首2次或命中机中3次或命中机尾1次,已知A每次射击,命中机首、机中、机尾的概率分别为0.2、0.4、0.1,未命中敌机的概率为0.3,且各次射击相互独立。若A至多射击两次,则他能击落敌机的概率为()A.0.23 B.0.2 C.0.16 D.0.14.已知随机变量服从正态分布,,则A. B. C. D.5.若复数()不是纯虚数,则()A. B. C. D.且6.已知变量与正相关,且由观测数据算得样本平均数,,则由该观测的数据算得的线性回归方程可能是()A. B.C. D.7.已知复数,若为纯虚数,则()A.1 B. C.2 D.48.若不等式|ax+2|<6的解集为(﹣1,2),则实数a等于()A.8 B.2 C.﹣4 D.﹣89.设是两个不同的平面,是一条直线,以下命题正确的是()A.若,则 B.若,则C.若,则 D.若,则10.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A. B. C. D.11.将函数的图象向左平移个单位长度后,所得图象的一个对称中心为()A. B. C. D.12.“石头、剪刀、布”,又称“猜丁壳”,是一种流行多年的猜拳游戏,起源于中国,然后传到日本、朝鲜等地,随着亚欧贸易的不断发展,它传到了欧洲,到了近代逐渐风靡世界.其游戏规则是:出拳之前双方齐喊口令,然后在语音刚落时同时出拳,握紧的拳头代表“石头”,食指和中指伸出代表“剪刀”,五指伸开代表“布”.“石头”胜“剪刀”、“剪刀”胜“布”、而“布”又胜过“石头”.若所出的拳相同,则为和局.小军和大明两位同学进行“五局三胜制”的“石头、剪刀、布”游戏比赛,则小军和大明比赛至第四局小军胜出的概率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知复数集中实系数一元二次方程有虚根,则的取值范围是_______.14.若函数为奇函数,则的取值范围为__________.15.已知棱长为的正方体中,,分别是和的中点,点到平面的距离为________________.16.2018年春季,世界各地相继出现流感疫情,这已经成为全球性的公共卫生问题.为了考察某种流感疫苗的效果,某实验室随机抽取100只健康小鼠进行试验,得到如下列联表:感染未感染总计注射104050未注射203050总计3070100参照附表,在犯错误的概率最多不超过____的前提下,可认为“注射疫苗”与“感染流感”有关系.(参考公式:.)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,曲线C的参数方程为(a为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)求C的普通方程和l的倾斜角;(2)设点,l和C交于A,B两点,求.18.(12分)已知,且是第三象限角,求,.19.(12分)已知极坐标系的极点在直角坐标系的原点处,极轴与轴正半轴重合,直线的参数方程为:(为参数,),曲线的极坐标方程为:.(1)写出曲线的直角坐标方程;(2)设直线与曲线相交于两点,直线过定点,若,求直线的斜率.20.(12分)已知函数.(1)求不等式的解集;(2)若对于一切,均有成立,求实数的取值范围.21.(12分)某单位组织“学习强国”知识竞赛,选手从6道备选题中随机抽取3道题.规定至少答对其中的2道题才能晋级.甲选手只能答对其中的4道题。(1)求甲选手能晋级的概率;(2)若乙选手每题能答对的概率都是,且每题答对与否互不影响,用数学期望分析比较甲、乙两选手的答题水平。22.(10分)△ABC的内角A,B,C的对边分别为,且.(1)求角A的大小;(2)求△ABC的面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据题意,求出的展开式的通项,即可得项的系数,进而分析可知若系数为有理数,必有,、2、、,即可得出答案.【详解】根据题意,的展开式的通项为;其系数为若系数为有理数,必有,、、共有336项,故选A.【点睛】本题考查二项式定理的应用,关键是掌握二项式定理的形式,属于基础题.2、B【解析】
利用指数函数与对数函数的单调性,即可得到判定,得出答案.【详解】由题意,指数函数时,函数是增函数,所以不正确,是正确的,又由对数函数是增函数,所以不正确;对数函数是减函数,所以不正确,故选B.【点睛】本题主要考查了指数函数以及对数函数的单调性的应用,其中熟记指数函数与对数函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.3、A【解析】每次射击,命中机首、机中、机尾的概率分别为,未命中敌机的概率为,且各次射击相互独立,若射击一次就击落敌机,则他击中利敌机的机尾,故概率为;若射击次就击落敌机,则他次都击中利敌机的机首,概率为;或者第一次没有击中机尾、且第二次击中了机尾,概率为,若至多射击两次,则他能击落敌机的概率为,故选.4、D【解析】
,选D.5、A【解析】
先解出复数()是纯虚数时的值,即可得出答案.【详解】若复数()是纯虚数,根据纯虚数的定义有:,则复数()不是纯虚数,故选A【点睛】本题考查虚数的分类,属于基础题.6、A【解析】试题分析:因为与正相关,排除选项C、D,又因为线性回归方程恒过样本点的中心,故排除选项B;故选A.考点:线性回归直线.7、B【解析】
计算,根据纯虚数的概念,可得,然后根据复数的模的计算,可得结果.【详解】为纯虚数,,,故选:B【点睛】本题考查复数中纯虚数的理解以及复数的模的计算,审清题干,细心计算,属基础题.8、C【解析】
利用不等式的解集和对应方程的根的关系来求解.【详解】因为的解集为,所以和是方程的根,所以解得.故选:C.【点睛】本题主要考查绝对值不等式的解法,明确不等式的解集和对应方程的关系是求解的关键,侧重考查数学运算的核心素养.9、C【解析】对于A、B、D均可能出现,而对于C是正确的.10、C【解析】
根据题先求出阅读过西游记的人数,进而得解.【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=10,则其与该校学生人数之比为10÷100=0.1.故选C.【点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.11、B【解析】
利用函数y=Asin(ωx+φ)的图象变换规律,再结合余弦函数的图象的对称性,得出结论.【详解】将函数y=sin(2x)的图象向左平移个单位长度后,可得函数y=sin(2x)=cos2x的图象.令2x=kπ,求得x,k∈Z.令k=0,可得x,故所得图象的一个对称中心为(,0),故选:B.【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,属于基础题.12、B【解析】根据“石头”胜“剪刀”,“剪刀”胜“布”,而“布”又胜“石头”,可得每局比赛中小军胜大明、小军与大明和局和小军输给大明的概率都为,∴小军和大年两位同学进行“五局三胜制”的“石头、剪刀、布”游戏比赛,则小军和大年比赛至第四局小军胜出,由指前3局中小军胜2局,有1局不胜,第四局小军胜,∴小军和大年比赛至第四局小军胜出的概率是:.故选B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
复数集中实系数一元二次方程有虚根,可得△,解得.利用求根公式可得,再利用模的计算公式即可得出.【详解】复数集中实系数一元二次方程有虚根,则△,解得.因为,则,所以的取值范围是.故答案为:.【点睛】本题考查不等式的解法、实系数一元二次方程与判别式的关系、模的计算公式,考查推理能力与计算能力.14、【解析】分析:中,,由在定义域内是一个偶函数,,知为奇函数,由此能求出的取值范围.详解:中,,,在定义域内是一个偶函数,,要使函数为奇函数,则为奇函数,①当时,;②当时,;③当时,.只有定义域为的子区间,且定义域关于0对称,才是奇函数,,即,.故答案为:.点睛:本题考查函数的奇偶性的应用,解题时要认真审题,仔细解答,注意分类讨论思想的灵活应用.15、1【解析】
以D点为原点,的方向分别为轴建立空间直角坐标系,求出各顶点的坐标,进而求出平面的法向量,代入向量点到平面的距离公式,即可求解.【详解】以为坐标原点,,,的方向分别为,,轴的正方向,建立空间直角坐标系,则,,,所以,,,设
是平面的法向量,则,即,令,可得,故,设点在平面上的射影为,连接,则是平面的斜线段,所以点到平面的距离.【点睛】本题主要考查了空间向量在求解距离中的应用,对于利用空间向量求解点到平面的距离的步骤通常为:①求平面的法向量;②求斜线段对应的向量在法向量上的投影的绝对值,即为点到平面的距离.空间中其他距离问题一般都可转化为点到平面的距离求解.着重考查了推理与运算能力,属于基础题.16、0.05【解析】
分析:直接利用独立性检验公式计算即得解.详解:由题得,所以犯错误的概率最多不超过0.05的前提下,可认为“注射疫苗”与“感染流感”有关系.故答案为0.05.点睛:本题主要考查独立性检验和的计算,意在考查学生对这些知识的掌握水平和解决实际问题的能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)..(2).【解析】
(1)直接利用参数方程和极坐标方程公式得到普通方程,再计算倾斜角.(2)判断点在直线l上,建立直线参数方程,代入椭圆方程,利用韦达定理得到答案.【详解】(1)消去参数α得,即C的普通方程为.由,得,(*)将,代入(*),化简得,所以直线l的倾斜角为.(2)由(1),知点在直线l上,可设直线l的参数方程为(t为参数),即(t为参数),代入并化简,得,,设A,B两点对应的参数分别为,,则,,所以,,所以.【点睛】本题考查了参数方程,极坐标方程,倾斜角,利用直线的参数方程可以简化运算.18、【解析】
由,结合是第三象限角,解方程组即可得结果.【详解】由可得由且是第三象限角,【点睛】本题主要考查同角三角函数之间的关系的应用,属于中档题.同角三角函数之间的关系包含平方关系与商的关系,平方关系是正弦与余弦值之间的转换,商的关系是正余弦与正切之间的转换19、(1);(2).【解析】
(1)由,得,由此能求出曲线C的直角坐标方程;(2)把代入,整理得,由,得,能求出直线l的斜率.【详解】(1)曲线C的极坐标方程为,所以.即,即.(2)把直线的参数方程带入得设此方程两根为,易知,而定点M在圆C外,所以,,,,可得,∴,所以直线的斜率为-1.【点睛】本题考查曲线的直角坐标方程的求法,考查直线的斜率的求法,考查极坐标方程、直角坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.20、(1);(2).【解析】分析:(1)直接解一元二次不等式即可;(2)将不等式转化为恒成立问题,分离参数,借助基本不等式得到的取值范围.详解:(1)∵,∴,∴,∴的解集为;(2)∵,∴当时,恒成立,∴,∴对一切均有成立,又,当且仅当时,等号成立.∴实数的取值范围为.点睛:本题考查了一元二次不等式的解法,以及将不等式转化为恒成立问题,分离参数,基本不等式的应用.21、(1);(2)乙选手比甲选手的答题水平高【解析】
(1)解法一:分类讨论,事件“甲选手能晋级”包含“甲选手答对道题”和“甲选手答对道题”,然后利用概率加法公式求出所求事件的概率;解法二:计算出事件“甲选手能晋级”的对立事件“甲选手答对道题”的概率,然后利用对立事件的概率公式可计算出答案;(2)乙选手答对的题目数量为,甲选手答对的数量为,根据题意知,随机变量服从超几何分布,利用二项分布期望公式求出,再利用超几何分布概率公式列出随机变量的分布列,并计算出,比较和的大小,然后可以下结论。【详解】解法一:(1)记“甲选手答对道题”为事件,,“甲选手能晋级”为事件,则。;(2)设乙选手答对的题目数量为,则,故,设甲选手答对的数量为,则的可能取值为,,,,故随机变量的分布列为所以,,则,所以,乙选手比甲选手的答题水平高;解法二:(1)记“甲选手能晋级”为事件,则;(2)同解法二。【点睛】本题考查概率的加法公式、对立事件的概率、古典概型的概率计算以及随机变量及其分布列,在求随机分布列的问题,关键要弄清楚随机变量所服从的分布类型,然后根据相关公式进行计算,考查计算能力,属于中等题。22、(1)(2)最大值.【解析】
(1)利用正弦定理得,再由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新版饮用水合同协议书3篇
- 常年性劳务代理协议3篇
- 工程培训设计与施工合同3篇
- 教育培训策划导游劳动合同样本3篇
- 电商运营人员聘用合同书
- 演播室隔音墙施工协议
- 装修合同施工范本
- 矿井排水防涝系统拉管施工合同
- 设备购买协议解除协议
- 印刷行业会计招聘协议样本
- 新建学校办学方案
- 网络画板智慧树知到期末考试答案2024年
- 2024年杭州市水务集团有限公司招聘笔试参考题库附带答案详解
- 教师语言(山东联盟-潍坊学院)智慧树知到期末考试答案2024年
- (高清版)DZT 0280-2015 可控源音频大地电磁法技术规程
- 西北师范大学马原复习参考题(选择题判断题)
- 民航空乘英语全套教学课件
- 中国平安体育营销品牌策略
- 2023-2024学年人教版新教材必修第二册 第五章第三节 无机非金属材料 课件(28张)
- 2024年北京通建信息系统有限公司招聘笔试参考题库含答案解析
- 组建城市建设运营公司方案
评论
0/150
提交评论