2022年天津中心庄中学高二数学理期末试卷含解析_第1页
2022年天津中心庄中学高二数学理期末试卷含解析_第2页
2022年天津中心庄中学高二数学理期末试卷含解析_第3页
2022年天津中心庄中学高二数学理期末试卷含解析_第4页
2022年天津中心庄中学高二数学理期末试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年天津中心庄中学高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若函数是R上的单调函数,则实数m的取值范围是(

)A、

B、

C、

D、参考答案:C2.空间中,可以确定一个平面的条件是()A.三个点 B.四个点 C.三角形 D.四边形参考答案:C【考点】平面的基本性质及推论.【分析】在A中,共线的三个点不能确定一个平面;在B中,不共线的四个点最多能确定四个平面;在C中,三角形能确定一个平面;在D中,空间四边形不能确定一个平面.【解答】解:由平面的基本性质及推论得:在A中,不共线的三个点能确定一个平面,共线的三个点不能确定一个平面,故A错误;在B中,不共线的四个点最多能确定四个平面,都B错误;在C中,由于三角形的三个项点不共线,因此三角形能确定一个平面,故C正确;在D中,四边形有空间四边形和平面四边形,空间四边形不能确定一个平面,故D错误.故选:C.3.在200m高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高为A.

B.

C.

D.参考答案:A解:如图所示,在Rt△ABC中,AB=200,∠BAC=300,

所以,

在△ADC中,由正弦定理得,,故选择A.4.若,则的最小值为()A. B. C. D.参考答案:B【分析】根据题意,得出,利用基本不等式,即可求解,得到答案。【详解】由题意,因为,则当且仅当且即时取得最小值.故选:B.【点睛】本题主要考查了利用基本不等式求最小值问题,其中解答中合理化简,熟练应用基本不等式求解是解答的关键,着重考查了运算与求解能力,属于基础题。5.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28 B.76 C.123 D.199参考答案:C略6.函数的单调增区间为(

)A.

B.

C.和

D.和参考答案:A7.设0<a<b<1,则下列不等式成立的是()A.a3>b3 B. C.ab>1 D.lg(b﹣a)<0参考答案:D【考点】不等关系与不等式.【分析】直接利用条件,通过不等式的基本性质判断A、B的正误;指数函数的性质判断C的正误;对数函数的性质判断D的正误;【解答】解:因为0<a<b<1,由不等式的基本性质可知:a3<b3,故A不正确;,所以B不正确;由指数函数的图形与性质可知ab<1,所以C不正确;由题意可知b﹣a∈(0,1),所以lg(b﹣a)<0,正确;故选D.8.曲线y=sinx+ex在点(0,1)处的切线方程是()A.x﹣3y+3=0 B.x﹣2y+2=0 C.2x﹣y+1=0 D.3x﹣y+1=0参考答案:C【考点】6H:利用导数研究曲线上某点切线方程.【分析】先求出函数的导函数,然后得到在x=0处的导数即为切线的斜率,最后根据点斜式可求得直线的切线方程.【解答】解:∵y=sinx+ex,∴y′=ex+cosx,∴在x=0处的切线斜率k=f′(0)=1+1=2,∴y=sinx+ex在(0,1)处的切线方程为:y﹣1=2x,∴2x﹣y+1=0,故选C.9.若,则“”是“”的(

).A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件参考答案:B或,所以“”是“”的必要而不充分条件,故选.10.已知椭圆:+=1(0<b<3),左右焦点分别为F1,F2,过F1的直线l交椭圆于A、B两点,若|BF2|+|AF2|的最大值为10,则b的值是()A.1 B. C. D.参考答案:C【考点】椭圆的简单性质.【分析】由椭圆的定义,求得|BF2|+|AF2|=12﹣(丨AF1丨+丨BF1丨),当丨AF1丨+丨BF1丨取最小值时,|BF2|+|AF2|取最大值,则=2,即可求得b的值.【解答】解:椭圆的焦点在x轴上,由椭圆的定义可知:丨AF1丨+丨AF2丨=2a=6,丨BF1丨+丨BF2丨=2a=6,则丨AF2丨=6﹣丨AF1丨,丨BF2丨=6﹣丨BF1丨,∴|BF2|+|AF2|=12﹣(丨AF1丨+丨BF1丨)=12﹣丨AB丨,当丨AF1丨+丨BF1丨=丨AB丨取最小值时,|BF2|+|AF2|取最大值,即=2,解得:b=,b的值,故选C.二、填空题:本大题共7小题,每小题4分,共28分11.设复数z满足i(z+1)=-3+2i,则z的实部是________.参考答案:1略12.设动点P在棱长为1的正方体ABCD﹣A1B1C1D1的对角线BD1上,记.当∠APC为钝角时,则λ的取值范围是.参考答案:(,1)【考点】用空间向量求直线间的夹角、距离.【分析】建立空间直角坐标系,利用∠APC不是平角,可得∠APC为钝角等价于cos∠APC<0,即,从而可求λ的取值范围.【解答】解:由题设,建立如图所示的空间直角坐标系D﹣xyz,则有A(1,0,0),B(1,1,0),C(0,1,0),D1(0,0,1)∴=(1,1,﹣1),∴=(λ,λ,﹣λ),∴=+=(﹣λ,﹣λ,λ)+(1,0,﹣1)=(1﹣λ,﹣λ,λ﹣1)=+=(﹣λ,﹣λ,λ)+(0,1,﹣1)=(﹣λ,1﹣λ,λ﹣1)显然∠APC不是平角,所以∠APC为钝角等价于cos∠APC<0∴∴(1﹣λ)(﹣λ)+(﹣λ)(1﹣λ)+(λ﹣1)2=(λ﹣1)(3λ﹣1)<0,得<λ<1因此,λ的取值范围是(,1)故答案为:(,1)【点评】本题考查了用空间向量求直线间的夹角,一元二次不等式的解法,属于中档题.13.已知函数,若f(a)+f(1)=0,则实数a的值等于_____参考答案:-314.函数的定义域和值域均为(0,+∞),的导数为,且,则的范围是______.参考答案:【分析】构造函数,利用的导数判断出在上为增函数,由得.构造函数,利用的导数判断出在上为减函数,由得.综上所述可得的取值范围.【详解】解:根据题意,设则,又由,则,则函数在上为增函数,则,即,变形可得,设则,又由,则,则函数在上为减函数,则,即,变形可得,综合可得:,即的范围是;故答案为:.【点睛】本小题主要考查构造函数法求表达式的取值范围,考查利用导数研究函数的单调性,属于难题.15.=_______参考答案:略16.已知点A(0,2),抛物线y2=2px(p>0)的焦点为F,准线为l,线段FA交抛物线于点B,过B作l的垂线,垂足为M,若AM⊥MF,则p=________.参考答案:略17.若y=alnx+bx2+x在x=1和x=2处有极值,则a=

,b=

.参考答案:﹣,﹣【考点】利用导数研究函数的极值.【分析】函数的极值点处的导数值为0,列出方程,求出a,b的值.【解答】解:f′(x)=+2bx+1,由已知得:?,∴a=﹣,b=﹣,故答案为:﹣,﹣.【点评】本题考查了导数的应用,考查函数极值的意义,是一道基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知△ABC的三个顶点,其外接圆为圆H.(1)若直线l过点C,且被圆H截得的弦长为2,求直线l的方程;(2)对于线段BH(包括端点)上的任意一点P,若在以C为圆心的圆上都存在不同的两点M,N,使得点M是线段PN的中点,求圆C的半径r的取值范围.参考答案:(1)线段的垂直平分线方程为,线段的垂直平分线方程为,所以外接圆圆心,半径,圆的方程为.设圆心到直线的距离为,因为直线被圆截得的弦长为2,所以.当直线垂直于轴时,显然符合题意,即为所求;当直线不垂直于轴时,设直线方程为,则,解得,综上,直线的方程为或.

…………6分

(2)解法一:直线的方程为,设,因为点是线段的中点,所以,又都在半径为的圆上,所以即因为该关于的方程组有解,即以为圆心,为半径的圆与以为圆心,为半径的圆有公共点,所以,又,所以对成立.而在[0,1]上的值域为[,10],所以且.又点在圆外,所以对成立,即.故圆的半径的取值范围为.

…………15分解法二:过点作交弦于点,则点为弦的中点.设,则有,.由勾股定理知,整理可得,所以对恒成立.令,由,可得,所以且,又,所以圆的半径的取值范围是.

…………15分19.已知条件p:k﹣2≤x﹣2≤k+2,条件q:1<2x<32,若p是q的充分不必要条件,求实数k的取值范围.参考答案:【考点】必要条件、充分条件与充要条件的判断.【专题】转化思想;定义法;简易逻辑.【分析】求出条件p,q的等价条件,根据p是q的充分不必要条件,建立不等式关系即可.【解答】解:由1<2x<32得0<x<5,即q:0<x<5,由k﹣2≤x﹣2≤k+2得k≤x≤k+4,即p:k≤x≤k+4,若p是q的充分不必要条件,则,即得0<k<1,即实数k的取值范围是(0,1).【点评】本题主要考查充分条件和必要条件的应用,根据不等式的性质求解条件的等价条件是解决本题的关键.20.参考答案:21.(本小题满分10分)2013年某时刻,在钓鱼岛附近的海岸处发现北偏东45°方向,距处(-1)海里的处有一艘日本走私船,在处北偏西75°方向,距处2海里的处的中国巡逻舰,奉命以10海里/时的速度追截日本走私船,此时日本走私船正以10海里/时的速度,从处向北偏东30°方向逃窜.问:中国巡逻舰沿什么方向行驶才能最快截获日本走私船?并求出所需时间.(改编题)参考答案:22.已知函数在处的切线的斜率为1.(1)求a的值及的最大值;(2)用数学归纳法证明:参考答案:(1);(2)见证明【分析】(1)求出函数的导函数,利用即可求出的值,再利用导函数判断函数的增减性,于是求得最大值;(2)①当,不等式成立;②假设当时,不等式成立;验证时,不等式成立即可.【详解】解:(1)函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论