版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内切球和外接球问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.一、直接法(公式法)1、求正方体的外接球的有关问题例1(2006年广东高考题)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________.解析:要求球的表面积,只要知道球的半径即可.因为正方体内接于球,所以它的体对角线正好为球的直径,因此,求球的半径可转化为先求正方体的体对角线长,再计算半径.故表面积为.例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为,则该球的体积为______________.解析:要求球的体积,还是先得求出球的半径,而球的直径正好是正方体的体对角线,因此,由正方体表面积可求出棱长,从而求出正方体的体对角线是所以球的半径为.故该球的体积为.2、求长方体的外接球的有关问题例3(2007年天津高考题)一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为,则此球的表面积为.解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。长方体体对角线长为,故球的表面积为.例4、(2006年全国卷I)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为().A.B.C.D.解析:正四棱柱也是长方体。由长方体的体积16及高4可以求出长方体的底面边长为2,因此,长方体的长、宽、高分别为2,2,4,于是等同于例3,故选C.3.求多面体的外接球的有关问题例5.一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为,底面周长为3,则这个球的体积为.解设正六棱柱的底面边长为,高为,则有∴正六棱柱的底面圆的半径,球心到底面的距离.∴外接球的半径..小结本题是运用公式求球的半径的,该公式是求球的半径的常用公式.二、构造法(补形法)1、构造正方体例5(2008年福建高考题)若三棱锥的三条侧棱两两垂直,且侧棱长均为,则其外接球的表面积是_______________.解析:此题用一般解法,需要作出棱锥的高,然后再设出球心,利用直角三角形计算球的半径.而作为填空题,我们更想使用较为便捷的方法,所以三条侧棱两两垂直,使我们很快联想到长方体的一个角,马上构造长方体,且侧棱长均相等,所以可构造正方体模型,如图1,则,那么三棱锥的外接球的直径即为正方体的体对角线,故所求表面积是.(如图1)例3若三棱锥的三个侧面两两垂直,且侧棱长均为,则其外接球的表面积是.解据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为的正方体,于是正方体的外接球就是三棱锥的外接球.设其外接球的半径为,则有.∴.故其外接球的表面积.小结一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为,则有.出现“墙角”结构利用补形知识,联系长方体。求出,所以,故B、C两点间的球面距离是.(如图5)本文章在给出图形的情况下解决球心位置、半径大小的问题。三.多面体几何性质法例2已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.B.C.D.解设正四棱柱的底面边长为,外接球的半径为,则有,解得.∴.∴这个球的表面积是.选C.小结本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.四.寻求轴截面圆半径法例4正四棱锥的底面边长和各侧棱长都为,点都在同一球面上,则此球的体积为.解设正四棱锥的底面中心为,外接球的球心为,如图1所示.∴由球的截面的性质,可得.又,∴球心必在所在的直线上.∴的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在中,由,得.∴.∴是外接圆的半径,也是外接球的半径.故.小结根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.五.确定球心位置法例5在矩形中,,沿将矩形折成一个直二面角,则四面体的外接球的体积为A.B.C.D.解设矩形对角线的交点为,则由矩形对角线互相平分,可知.∴点到四面体的四个顶点的距离相等,即点为四面体的外接球的球心,如图2所示.∴外接球的半径.故.选C.出现两个垂直关系,利用直角三角形结论。【原理】:直角三角形斜边中线等于斜边一半。球心为直角三角形斜边中点。【例题】:已知三棱锥的四个顶点都在球的球面上,且,,,,求球的体积。解:且,,,,因为所以知所以所以可得图形为:在中斜边为在中斜边为取斜边的中点,在中在中所以在几何体中,即为该四面体的外接球的球心所以该外接球的体积为【总结】斜边一般为四面体中除了直角顶点以外的两个点连线。1.(陕西•)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是()A.B.C.D.2.直三棱柱的各顶点都在同一球面上,若,,则此球的表面积等于。3.正三棱柱内接于半径为的球,若两点的球面距离为,则正三棱柱的体积为.4.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为A.B.C.D.5.已知正方体外接球的体积是,那么正方体的棱长等于()A.2B.C.D.6.(2006山东卷)正方体的内切球与其外接球的体积之比为()A.1∶B.1∶3C.1∶3D.1∶97.(2008海南、宁夏)一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为,底面周长为3,则这个球的体积为.8.(2007天津)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为.9.(2007全国Ⅱ)一个正四棱柱的各个顶点在一个直径为2cm的球面上。如果正四棱柱的底面边长为1cm,那么该棱柱的表面积为cm2.ABCPDEF10.(2006辽宁ABCPDEF锥的侧面积是________.11.(辽宁省抚顺一中2009届高三数学上学期第一次月考)棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是.12.(2009枣庄一模)一个几何体的三视图如右图所示,则该几何体外接球的表面积为 () A. B. C. D.以上都不对 13.(吉林省吉林市2008届上期末)设正方体的棱长为EQ\f(2\r(3),3),则它的外接球的表面积为() A.B.2πC.4π D.答案C1、答案B2、解:在中,,可得,由正弦定理,可得外接圆半径r=2,设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单位买卖煤炭合同范例
- 房屋拆迁劳务合同范例
- 小区定制玩具合同模板
- 工商有备案合同范例
- 房屋委托合同范例
- 个人房屋定金合同模板
- 建筑居间服务合同模板
- 广告购材料合同范例
- Unit-1-Cultural-Heritage-词汇知识点背诵记忆
- 桥梁燃气管线保护方案
- 2024-2025学年广东省珠海市香洲区九洲中学教育集团七年级(上)期中数学试卷(含答案)
- 资本经营-终结性考试-国开(SC)-参考资料
- 商务礼仪课件教学课件
- 【天润乳业资本结构问题及优化对策分析案例10000字】
- 住院医师规范化培训责任导师制管理制度
- 2024-2025学年高中物理必修 第三册人教版(2019)教学设计合集
- 2024年连锁奶茶店员工工作协议版
- DB34T 1835-2022 高速公路收费人员微笑服务规范
- 2024年山东省中考英语试卷十二套合卷附答案
- 全国民族团结进步表彰大会全文
- 部编版(2024)一年级道德与法治上册第三单元第11课《对人有礼貌》教学课件
评论
0/150
提交评论