版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4/5一动点到两定点的距离最值熊明军在学习三角形时,我们知道了三角形的三边之间有一个不等关系:“三角形的两边之和大于第三边”;“三角形的两边之差小于第三边”。借助这个三角不等式,再结合典型例题,我们可以得到一个动点到两个定点距离最值问题的研究方法与相关结论。一、典型例题的回顾【例题】已知有一段河岸相互平行的一条河,在河岸的一侧有两个村庄,如下图。现在政府为了让两个村庄用上自来水,决定出资在河岸边建一个自来水厂,并在村庄与水厂之间铺设输水管道输水,为了降低成本,就必须使铺设的管道总长度最短,那么自来水厂应该建在河岸的什么位置,用尺规作图在图中标出。【解析】假设靠近村庄的河岸为线段,村庄是两个固定的点,此题的意思就是问:在线段上有一个动点,求在线段上移动到什么位置才能使最短。结论:①直线上一动点到两个定点距离之和最小问题,要根据点对称将两个定点转化到直线的两侧;②直线上一动点到两个定点距离之差最大问题,要根据点对称将两个定点转化到直线的同侧。二、研究问题的理论法则一:平面上一动点到两个定点的距离之和有最小值,当且仅当在线段之间时取最小值。法则二:平面上一动点到两个定点的距离之差有最大值,当且仅当在线段的延长线上时取最大值。注意①:一动点到两定点距离最值的取得都是使动点与定点转化到一条直线上;如若不在一条直线上,就必须借助题中的条件与相关结论转化之。注意②:平面上一动点到两个定点的距离之和有最小值;距离之差有最大值。如若出现动点到两个定点的距离之和有最大值;距离之差有最小值,就必须使之转化为法则中的情况,即:距离之和最小值;距离之差最大值。【证明】(法则一)已知平面上两个动点,是平面上任意一个动点,如下图:①当动点与定点不共线时,根据三角形三边关系“两边之和大于第三边”可知;②当动点与定点共线,且在线段的延长线上时,显然有;③当动点与定点共线,且在线段之间时,显然有;综上所述,,当且仅当动点在线段之间时取最小值。【证明】(法则二)已知平面上两个动点,是平面上任意一个动点,如下图:①当动点与定点不共线时,根据三角形三边关系“两边之差小于第三边”可知;②当动点与定点共线,且在线段之间时,显然有;③当动点与定点共线,且在线段的延长线上时,显然有;综上所述,,当且仅当动点在线段的延长线上时取最大值。三、典型例题的讲解①动点在直线上【例一】已知点,点是直线上的动点,求的最小值及的最大值。题中让我们求最小值,同例三,只要利用条件把转化为动点到两定点的和的形式就能求解。利用双曲线的定义把求的最小值转化成了求的最小值,利用法则二可知,当动点在线段上时,如上右图所示,有最小值。即。【例五】(动点在抛物线上)设是抛物线的焦点,是抛物线上的任一动点,已知点,求的最小值。【解析】为两定点,为动点,由法则一可知点若能在线段之间,可立即得到的最小值,在平面直角坐标中做出抛物线及相应的点,如上左图所示。在抛物线中,由定义可得动点到焦点的距离等于动点到准线的距离,即,所以。显然,当动点运动到如上右图所示的位置时,点在线段之间,即。【练习】已知为抛物线上任一动点,为圆上任一动点,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 营销培训课件-公众账号微信营销策划方案
- 毛发囊肿的临床护理
- 在省委第四巡视组巡视临夏州情况反馈会上的主持讲话
- 汗管棘皮瘤的临床护理
- 孕期焦虑症的健康宣教
- 多发性脂囊瘤的临床护理
- 妊娠线的健康宣教
- X连锁高IgM综合征的健康宣教
- JJF(陕) 096-2022 氟化氢气体检测报警器校准规范
- 【培训课件】非HR人员的人事管理
- 2022-2023学年四川省巴中市巴州区川教版(三起)四年级上学期期末英语试卷
- 无人机风险评估和监测
- 人教版(2023) 选择性必修第一册 Unit 2 Looking into the Future Assessing Your Progress教案
- 正畸治疗中患者牙釉质脱矿的发病及损度观察
- 社区居民大肠癌筛查(完整版)
- 脑血管意外的护理常规课件
- 迎新春送吉祥义务写春联活动方案
- 楼体亮化安全施工方案
- 常见藻类图谱(史上最全版本)
- 新教材北师大版数学一年级上册教学反思全册
- KIS专业版数据库及字段描述
评论
0/150
提交评论