2022年江苏省无锡市第二高级中学高三数学理模拟试题含解析_第1页
2022年江苏省无锡市第二高级中学高三数学理模拟试题含解析_第2页
2022年江苏省无锡市第二高级中学高三数学理模拟试题含解析_第3页
2022年江苏省无锡市第二高级中学高三数学理模拟试题含解析_第4页
2022年江苏省无锡市第二高级中学高三数学理模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年江苏省无锡市第二高级中学高三数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数的零点所在的区间是(

)A.

B.

C.

D.参考答案:B2.将函数的图象向右平移个单位后得到函数的图象,则的值为(

)A.

B.

C.2

D.参考答案:A3.圆上的点到直线的最大距离与最小距离的差为(

)A.

B.

C.

D.6参考答案:答案:B4.执行如图所示的程序框图,则输出的n=(

)A.3 B.4 C.5 D.6参考答案:C【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算S的值并输出相应变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得

S=0,n=1

S=2,n=2

满足条件S<30,执行循环体,S=2+4=6,n=3

满足条件S<30,执行循环体,S=6+8=14,n=4

满足条件S<30,执行循环体,S=14+16=30,n=5

此时,不满足条件S<30,退出循环,输出n的值为5.

故选C.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.5.抛物线y=2x2的焦点坐标是(

)A.(0,) B.(,0) C.(0,) D.(,0)参考答案:C【考点】抛物线的简单性质.【专题】计算题;转化思想;圆锥曲线的定义、性质与方程.【分析】将抛物线化为标准方程,结合抛物线的性质,可得答案.【解答】解:抛物线y=2x2的标准方程为:x2=y,故抛物线y=2x2的焦点坐标是(0,),故选:C【点评】本题考查的知识点是抛物线的性质,化为标准方程是解答圆锥曲线类问题的关键.6.在等差数列中,,则的值为(

)A.2

B.3

C.4

D.5参考答案:A试题分析:在等差数列中,,所以,所以.考点:等差数列的性质7.按如下程序框图,若输出结果为,则判断框内应补充的条件为A.

B. C. D.

参考答案:C第一次循环有.第二次循环有.第三次循环有。第四次循环有,此时为输出结果,说明满足条件,故条件为或,所以选C.8.定义在R上的奇函数,当,记的反函数为的值为

A.0

B.2

C.-2

D参考答案:C9.已知函数及其导数,若存在,使得=,则称是的一个“巧值点”,下列函数中,有“巧值点”的函数的个数是(

①,②,③,④,⑤

A.2

B.3

C.4

D.5参考答案:B略10.函数的图像大致为(

).

参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.函数f(x)的图像与函数g(x)=()x的图像关于直线y=x对称,则f(2x-x2)的单调减区间为______________参考答案:(1可开可闭)12.函数的部分图象如图所示,点,,若,则等于

.参考答案:13.在直角坐标系xOy中,已知点,若点P满足,则=_____.参考答案:【分析】求出的坐标后可的值.【详解】因为,所以为的重心,故的坐标为即,故.填.【点睛】在三角形中,如果为三角形的重心,则,反之也成立.14.已知,则函数的零点的个数是;参考答案:315.13.中心在原点,焦点在轴上的双曲线一条渐近线的方程是,则该双曲线的离心率是_______;参考答案:略16.一个几何体的三视图如图所示,则这个几何体的体积等于

.参考答案:17.函数-1的图像恒过定点A,若点A在直线上,其中的最小值为

参考答案:4三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.《环境空气质量指标(AQI)技术规定(试行)》如表1:表1:空气质量指标AQI分组表AQI0~5051~100101~150151~200201~300>300级别Ⅰ级Ⅱ级Ⅲ级Ⅳ级Ⅴ级Ⅵ级类别优良轻度污染中度污染重度污染严重污染表2是长沙市某气象观测点在某连续4天里的记录,AQI指数M与当天的空气水平可见度y(km)的情况.表2:AQI指数900700300100空气可见度(千米)0.53.56.59.5表3是某气象观测点记录的长沙市2016年1月1日至1月30日AQI指数频数统计表.表3:AQI指数[0,200](201,400](401,600](601,800](801,1000]频数361263(1)设x=,根据表2的数据,求出y关于x的回归方程;(2)小李在长沙市开了一家小洗车店,经小李统计:AQI指数不高于200时,洗车店平均每天亏损约200元;AQI指数在200至400时,洗车店平均每天收入约400元;AQI指数大于400时,洗车店平均每天收入约700元.(ⅰ)计算小李的洗车店在当年1月份每天收入的数学期望.(ⅱ)若将频率看成概率,求小李在连续三天里洗车店的总收入不低于1200元的概率.(用最小二乘法求线性回归方程系数公式=,=﹣x)参考答案:【考点】线性回归方程;列举法计算基本事件数及事件发生的概率.【分析】(1)利用公式计算线性回归方程系数,即可得到y关于x的线性回归方程;(2)(ⅰ)由表2知AQI指数不高于200的频率为0.1,AQI指数在200至400的频率为0.2,AQI指数大于400的频率为0.7,确定饭馆每天的收入的取值及概率,从而可求分布列及数学期望;(ⅱ)由(ⅰ),“连续三天洗车店收入不低于1200元包含1A2C,3B,2B1C,1B2C,3C五种情况”,即可求出小李在连续三天里洗车店的总收入不低于1200元的概率.【解答】解:(1),,,,所以,,所以y关于x的回归方程是.(2)由表3知AQI不高于200的频率为0.1,AQI指数在200至400的频率为0.2,AQI指数大于400的频率为0.7.设“洗车店每天亏损约200元”为事件A,“洗车店每天收入约400元”为事件B,“洗车店每天收入约700元”为事件C,则P(A)=0.1,P(B)=0.2,P(C)=0.7,(ⅰ)设洗车店每天收入为X元,则X的分布列为X﹣200400700P0.10.20.7则X的数学期望为EX=﹣200×0.1+400×0.2+700×0.7=550(元).(ⅱ)由(ⅰ),“连续三天洗车店收入不低于1200元包含1A2C,3B,2B1C,1B2C,3C五种情况”,则“连续三天洗车店收入不低于1200元”的概率:.19.(本题满分18分,第1小题4分,第2小题6分,第3小题8分)已知数列{an}满足,(其中λ≠0且λ≠–1,n∈N*),为数列{an}的前项和.(1)若,求的值;(2)求数列{an}的通项公式;(3)当时,数列{an}中是否存在三项构成等差数列,若存在,请求出此三项;若不存在,请说明理由.参考答案:解:(1)令,得到,令,得到。…………2分由,计算得.……………………4分(2)由题意,可得:

,所以有,又,……5分得到:,故数列从第二项起是等比数列。……………7分又因为,所以n≥2时,……………8分所以数列{an}的通项…………………10分(3)因为

所以……11分假设数列{an}中存在三项am、ak、ap成等差数列,①不防设m>k>p≥2,因为当n≥2时,数列{an}单调递增,所以2ak=am+ap即:2′()′4k–2=′4m–2+′4p–2,化简得:2′4k-p=4m–p+1即22k–2p+1=22m–2p+1,若此式成立,必有:2m–2p=0且2k–2p+1=1,故有:m=p=k,和题设矛盾………………14分②假设存在成等差数列的三项中包含a1时,不妨设m=1,k>p≥2且ak>ap,所以2ap=a1+ak,2′()′4p–2=–

+()′4k–2,所以2′4p–2=–2+4k–2,即22p–4=22k–5–1因为k>p≥2,所以当且仅当k=3且p=2时成立………16分因此,数列{an}中存在a1、a2、a3或a3、a2、a1成等差数列……………18分略20.某港口的水深y(m)是时间t(0≤t≤24,单位:h)的函数,下表是该港口某一天从0:00时至24:00时记录的时间t与水深y的关系:t(h)0:003:006:009:0012:0015:0018:0021:0024:00y(m)10.013.09.97.010.013.010.17.010.0经长时间的观察,水深y与t的关系可以用拟合。根据当天的数据,完成下面的问题:

(1)求出当天的拟合函数的表达式;

(2)如果某船的吃水深度(船底与水面的距离)为7m,船舶安全航行时船底与海底的距离不少于4.5m。那么该船在什么时间段能够进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间。(忽略离港所需时间)

(3)若某船吃水深度为8m,安全间隙(船底与海底的距离)为2.5.该船在3:00开始卸货,吃水深度以每小时0.5m的速度减少,那么该船在什么时间必须停止卸货,驶向较安全的水域?参考答案:(1)根据数据,画出散点图,知A=3,h=10,T=12,,

(2)由题意,水深y≥4.5+7,即,,,或;所以,该船在1:00至5:00或13:00至17:00能安全进港。若欲于当天安全离港,它在港内停留的时间最多不能超过16小时.(3)设在时刻x船舶安全水深为y,则(),这时水深,若使船舶安全,则,即,,即该船在7:00必须停止卸货,驶向较安全的水域。21.(14分)设数列的前项和为,且;数列为等差数列,且。(1)求数列的通项公式;(2)若为数列的前项和,求证:。参考答案:解析:(1)由

(2)数列为等差数列,公差

从而

从而22.2014年“双节”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90)后得到如图的频率分布直方图.(1)求这40辆小型车辆车速的众数、平均数和中位数的估计值;(2)若从车速在[60,70)的车辆中任抽取2辆,求车速在[65,70)的车辆恰有一辆的概率.参考答案:【考点】列举法计算基本事件数及事件发生的概率;散点图.【专题】计算题;转化思想;综合法;概率与统计.【分析】(1)众数的估计值为最高的矩形的中点,由此能求出众数的估计值;设图中虚线所对应的车速为x,由频率分布直方图能求出中位数的估计值和平均数的估计值.(2)从频率分布直方图求出车速在[60,65)的车辆数、车速在[65,70)的车辆数,设车速在[60,65)的车辆设为a,b,车速在[65,70)的车辆设为c,d,e,f,利用列举法能求出车速在[65,70)的车辆恰有一辆的概率.【解答】解:(1)众数的估计值为最高的矩形的中点,即众数的估计值等于77.5,设图中虚线所对应的车速为x,则中位数的估计值为:0.01×5+0.02×5+0.04×5+0.06×(x﹣75)=0.5,解得x=77.5,即中位数的估计值为77.5,平均数的估计值为:5×(62.5×0.01+67.5×0.02+72.5×0.04+77.5×0.06+82.5×0.05+87.5×0.02)=77.(2)从图中可知,车速在[60,65)的车辆数为:m1=0.01×5×40=2(辆),车速在[65,70)的车辆数为:m2=0.02×5×40=4(辆)设车速在[60,65)的车辆设为a,b,车速在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论