版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市高新国际中学高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知,则在方向上的投影为
(
)
A.
B.
C.
D.参考答案:B2.从一堆苹果中任取了20个,并得到它们的质量(单位:克)数据分布表如下:分组[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]频数1231031则这堆苹果中,质量不小于120克的苹果数约占苹果总数的()A.30%
B.70%C.60%
D.50%参考答案:B3.已知数列,则是这个数列的(
)A.第6项 B.第7项 C.第19项 D.第11项参考答案:B解:数列即:,据此可得数列的通项公式为:,由解得:,即是这个数列的第项.本题选择B选项.4.用反证法证明命题“+是无理数”时,假设正确的是()A.假设是有理数 B.假设是有理数C.假设或是有理数 D.假设+是有理数参考答案:D【考点】反证法.【分析】假设结论的反面成立,将是改为不是,从而我们可以得出结论.【解答】解:假设结论的反面成立,+不是无理数,则+是有理数.故选D5.与圆C:x2+(y+5)2=3相切,且纵截距和横截距相等的直线共有(
)A.2条
B.3条
C.4条
D.6条参考答案:C6.双曲线y=(k>0)的离心率用e=f(k)来表示,则f(k)(
)(A)在(0,+∞)上是增函数
(B)在(0,+∞)上是减函数(C)在(0,1)上是增函数,在(1,+∞)上是减函数
(D)是常数参考答案:D7.直线与圆相切,则A.
B.
C.
D.参考答案:A略8.△的内角的对边分别为,且成等比数列,,则=(
)
A.
B.
C.
D.参考答案:B9.当是两个不相等的正数时,下列不等式中不成立的是
(
)
A.
B.
C.
D.参考答案:
B
提示:当时,,而10.为了旅游业的发展,某旅行社组织了14人参加“旅游常识”知识竞赛,每人回答3个问题,答对题目个数及对应人数统计结果见下表:答对题目个数0123人数3254根据上表信息,若从14人中任选3人,则3人答对题目个数之和为6的概率是()A. B. C. D.参考答案:D【考点】列举法计算基本事件数及事件发生的概率.【分析】从14人中任选3人,求出基本事件总数n=,记“3人答对题目个数之和为6”为事件A,求出事件A包含的基本事件个数,由此利用列举法能求出从14人中任选3人,则3人答对题目个数之和为6的概率.【解答】解:∵从14人中任选3人,基本事件总数n=,记“3人答对题目个数之和为6”为事件A,则事件A包含的基本事件个数:m=,∴从14人中任选3人,则3人答对题目个数之和为6的概率是:P(A)==.故选:D.【点评】本小题主要概率等基础知识,考查数据处理能力、运算求解能力以及应用意识,考查必然与或然思想等,是基础题.二、填空题:本大题共7小题,每小题4分,共28分11.若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为,则的取值范围是
(
)
A.(1,2)
B.(2,+∞)
C.[3,+∞
D.(3,+∞)参考答案:B略12.五个数1,2,3,4,a的平均数是3,则a=____,这五个数的标准差是_________.参考答案:5,13.已知定义在R上的函数f(x)满足f′(x)﹣f(x)=(1﹣2x)e﹣x,且f(0)=0则下列命题正确的是.(写出所有正确命题的序号)①f(x)有极大值,没有极小值;②设曲线f(x)上存在不同两点A,B处的切线斜率均为k,则k的取值范围是;③对任意x1,x2∈(2,+∞),都有恒成立;④当a≠b时,方程f(a)=f(b)有且仅有两对不同的实数解(a,b)满足ea,eb均为整数.参考答案:①②③④【考点】命题的真假判断与应用;利用导数研究函数的极值.【分析】由已知中函数f(x)满足f′(x)﹣f(x)=(1﹣2x)e﹣x,可得f(x)=xe﹣x,f′(x)=(1﹣x)e﹣x,逐一分析四个命题的真假,可得答案.【解答】解:①∵f′(x)﹣f(x)=(1﹣2x)e﹣x,∴f(x)=xe﹣x,f′(x)=(1﹣x)e﹣x,令f′(x)>0,解得:x<1,令f′(x)<0,解得:x>1,∴函数f(x)在(﹣∞,1)递增,在(1,+∞)递减,∴函数f(x)的极大值是f(1),没有极小值;故①正确;②∵k=f′(x)=(1﹣x)e﹣x,∴f″(x)=e﹣x(x﹣2),令f″(x)>0,解得:x>2,令f″(x)<0,解得:x<2,∴f′(x)在(﹣∞,2)递减,在(2,+∞)递增,∴f′(x)最小值=f′(x)极小值=f′(2)=﹣,而x→∞时,f′(x)→0,∴k的取值范围是;故②正确;③结合①②函数f(x)在(2,+∞)上是凹函数,∴恒成立,故③正确;④当a≠b时,方程f(a)=f(b),不妨令a<b,则a∈(0,1),则ea∈(1,e),又有ea为整数.故ea=eb=2,同理a>b时,也存在一对实数(a,b)使ea=eb=2,故有两对不同的实数解(a,b)满足ea,eb均为整数.故④正确;故答案为:①②③④14.给出下面的数表序列:
其中表(=1,2,3)有行,表中每一个数“两脚”的两数都是此数的2倍,记表中所有的数之和为,例如,,.则=
.参考答案:略15.如图,梯形ABCD中,AD∥BC,∠ABC=90°,对角线AC⊥BD于P点,已知AD∶BC=1∶2,则BD∶AC的值是__________.参考答案:16.以椭圆的焦点为焦点,离心率为2的双曲线方程为
参考答案:17.数列{an}是公差不为0的等差数列,且a2+a6=a8,则=________.参考答案:3三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.(Ⅰ)证明:BC1∥平面A1CD(Ⅱ)求二面角D﹣A1C﹣E的正弦值.参考答案:【考点】二面角的平面角及求法;直线与平面平行的判定.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)连接AC1交A1C于点F,由三角形中位线定理得BC1∥DF,由此能证明BC1∥平面A1CD.(Ⅱ)以C为坐标原点,的方向为x轴正方向,的方向为y轴正方向,的方向为z轴正方向,建立空间直角坐标系C﹣xyz.分别求出平面A1CD的法向量和平面A1CE的法向量,利用向量法能求出二面角D﹣A1C﹣E的正弦值.【解答】(Ⅰ)证明:连接AC1交A1C于点F,则F为AC1的中点.又D是AB的中点,连接DF,则BC1∥DF.因为DF?平面A1CD,BC1?平面A1CD,所以BC1∥平面A1CD.(Ⅱ)解:由AC=CB=AB,得AC⊥BC.以C为坐标原点,的方向为x轴正方向,的方向为y轴正方向,的方向为z轴正方向,建立如图所示的空间直角坐标系C﹣xyz.设CA=2,则D(1,1,0),E(0,2,1),A1(2,0,2),=(1,1,0),=(0,2,1),=(2,0,2).设=(x1,y1,z1)是平面A1CD的法向量,则,取x1=1,得=(1,﹣1,﹣1).同理,设=(x2,y2,z2)是平面A1CE的法向量,则,取x2=2,得=(2,1,﹣2).从而cos<,>==,故sin<,>=.即二面角D﹣A1C﹣E的正弦值为.【点评】本题主要考查直线与平面、平面与平面之间的平行、垂直等位置关系,考查线面平行、二面角的概念、求法等知识,考查空间想象能力和逻辑推理能力,是中档题.19.设:,:,且是的充分不必要条件,求实数的取值范围.参考答案:
略20.(本小题满分12分)已知△ABC中,三个内角A,B,C的对边分别为,若△ABC的外接圆的半径为,且
(I)求∠C;
(Ⅱ)求△ABC的面积S的最大值.参考答案:(1),
(2)21.我缉私巡逻艇在一小岛南50o西的方向,距小岛A12海里的B处,发现隐藏在小岛边上的一走私船正开始向岛北10o西方向行驶,测得其速度为每小时10海里,问我巡逻艇须用多大的速度朝什么方向航行才能恰在两小时后截获该走私船?(必要时,可参考下列数据sin38o≈0.62)w
参考答案:解析:
射线即为走私船航行路线.假设我巡逻艇恰在处截获走私船,我巡逻艇的速度为每小时海里,则,.
--------2分依题意,,由余弦定理:------4分,海里/,
----6分又由正弦定理,
------8分
,
------10分即我巡逻艇须用每小时14海里的速度向北东的方向航行才能恰在两小时后截获走私船.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 店面租房合同(2篇)
- 爆破工程合同范本示例
- 绿色水稻购销协议
- 云计算配件销售协议
- 二零二四年度软件开发合同标的及服务内容
- 核桃果实采购协议格式
- 可靠活动服务合同
- 会议服务合同协议书的争议解决
- 招标货物运输合作项目招标
- 挖掘机采购合同文本
- 2024年执业药师资格继续教育定期考试题库附含答案
- 蚯蚓与土壤肥力提升2024年课件
- 天津市和平区2024-2025学年高一上学期11月期中英语试题(含答案含听力原文无音频)
- 2024年高中化学教师资格考试面试试题与参考答案
- 全科医生转岗培训结业考核模拟考试试题
- 吃动平衡健康体重 课件 2024-2025学年人教版(2024)初中体育与健康七年级全一册
- 部编版(2024秋)语文一年级上册 第七单元 阅读-7.两件宝课件
- 电力安全事故典型案例分析
- 2024年四川省宜宾市中考地理试卷(含答案与解析)
- 电力设备预防性试验规程
- 4.3《课间》 (教案)-2024-2025学年一年级上册数学北师大版
评论
0/150
提交评论