




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省滨州市阳信第二中学高一数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若变量x,y满足约束条件,则z=2x+3y的最小值为(
)A.17 B.14 C.5 D.3参考答案:C【考点】简单线性规划.【专题】数形结合;不等式的解法及应用.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(1,1),化目标函数z=2x+3y为,由图可知,当直线过A时,z有最小值为2×1+3×1=5.故选:C.【点评】本题考查了线性规划,考查了数学转化思想方法和数形结合的解题思想方法,是中档题.2.如图是函数f(x)=Acos(πx+φ)﹣1(A>0,|φ|<)的图象的一部分,则f=(
)A.1 B.2 C. D.﹣3参考答案:D【考点】余弦函数的图象.【专题】计算题;数形结合;数形结合法;三角函数的图像与性质.【分析】根据已知中函数f(x)=Acos(πx+φ)﹣1(A>0,|φ|<)的图象,求出函数的解析式,结合函数周期性可得f=f(2)=2cosπ﹣1=﹣3.【解答】解:∵函数f(x)=Acos(πx+φ)﹣1的周期T==3,函数的最大值A﹣1=1,故A=2,又由函数图象过(1,0),故2cos(π+φ)﹣1=0,即cos(π+φ)=,由|φ|<得:φ=﹣,∴f(x)=2cos(πx﹣)﹣1∴f=f(2)=2cosπ﹣1=﹣3,故选:D【点评】本题考查的知识点是余弦型函数的图象和性质,熟练掌握余弦型函数的图象和性质,是解答的关键.3.在△ABC中,a∶b∶c=1∶5∶6,则sinA∶sinB∶sinC等于()A.1∶5∶6B.6∶5∶1C.6∶1∶5D.不确定参考答案:A略4.图中阴影部分表示的集合是(
)
A.
B.
C.
D.参考答案:D略5.若一系列函数的解析式和值域相同,但定义域不同,则称这些函数为“同族函数”,例如函数与函数就是“同族函数”.下列有四个函数:①;②
;③;④;可用来构造同族函数的有_
▲
参考答案:①②6.数列满足,,,…,是首项为,公比为的等比数列,那么(
)A.
B.
C.
D.参考答案:A略7.同时掷三枚硬币,至少有1枚正面向上的概率是(
)A. B. C. D.参考答案:A【分析】先根据古典概型概率公式求没有正面向上的概率,再根据对立事件概率关系求结果.【详解】因为没有正面向上的概率为,所以至少有1枚正面向上的概率是1-,选A.8.若函数则(
).A.2
B.3
C.4
D.1参考答案:B略9.在中,,则一定是
A、直角三角形
B、钝角三角形
C、等腰三角形
D、等边三角形参考答案:A10.如图,已知两个正方形和不在同一平面内,平面平面,分别为的中点,若两个正方形的顶点都在球上,且球的表面积为,则的长为A.1
B.
C.2
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.函数的定义域是,则函数的定义域是
参考答案:12.(5分)若函数y=﹣2x2+mx﹣3在[﹣1,+∞)上为减函数,则m的取值范围是
.参考答案:m≤﹣4考点: 二次函数的性质.专题: 计算题;函数的性质及应用.分析: 判断二次函数的单调减区间与区间[﹣1,+∞)的关系.解答: ∵f(x)=﹣2x2+mx﹣3,∴二次函数的对称轴为,且函数在[,+∞)上单调递减,∴要使数在区间[﹣1,+∞)上为减函数,则≤﹣1,∴m≤﹣4.故答案为:m≤﹣4.点评: 本题考查了函数的单调性的应用,利用二次函数的单调减区间与区间[﹣1,+∞)的关系是解题的关键..13.若函数是奇函数,则实数的值为
.参考答案:14.关于x的方程sin=k在[0,π]上有两解,则实数k的取值范围是______.参考答案:[1,)15.lg+2lg2﹣()﹣1=
.参考答案:﹣1【考点】对数的运算性质.【专题】函数的性质及应用.【分析】利用对数的运算法则以及负指数幂的运算化简各项,利用lg2+lg5=1化简求值.【解答】解:原式=lg5﹣lg2+2lg2﹣2=lg5+lg2﹣2=lg10﹣2=1﹣2=﹣1;故答案为:﹣1.【点评】本题考查了对数的运算以及负指数幂的运算;用到了lg2+lg5=1.16.已知方程(为实数)有两个实数根且一根在上,一根在上,的取值范围
参考答案:17.函数的值域是______.参考答案:【分析】根据反正弦函数定义得结果【详解】由反正弦函数定义得函数的值域是【点睛】本题考查反正弦函数定义,考查基本分析求解能力,属基础题三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知三棱锥P-ABC中,是边长为2的正三角形,;(1)证明:平面PAC⊥平面ABC;(2)设F为棱PA的中点,求二面角P-BC-F的余弦值.参考答案:(1)见解析(2)【分析】(1)由题意结合正弦定理可得,据此可证得平面,从而可得题中的结论;(2)在平面中,过点作,以所在的直线分别为轴建立空间直角坐标系,由空间向量的结论求得半平面的法向量,然后求解二面角的余弦值即可.【详解】(1)证明:在中,,,,由余弦定理可得,,,,平面,平面,平面平面.(2)在平面中,过点作,以所在的直线分别为轴建立空间直角坐标系,则设平面的一个法向量为则解得,,即设平面的一个法向量为则解得,,即由图可知二面角为锐角,所以二面角的余弦值为.【点睛】本题主要考查面面垂直的证明方法,空间向量的应用等知识,意在考查学生的转化能力和计算求解能力.19.用a,b,c分别表示△ABC的三个内角A,B,C所对边的边长,R表示△ABC的外接圆半径.(1)R=2,a=2,B=45°,求AB的长;(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2;(3)给定三个正实数a,b,R,其中b≤a,问a,b,R满足怎样的关系时,以a,b为边长,R为外接圆半径的△ABC不存在,存在一个或存在两个(全等的三角形算作同一个)?在△ABC存在的情况下,用a,b,R表示c.参考答案:【考点】正弦定理.【分析】(1)由已知及正弦定理可sinA,b,利用大边对大角可得A为锐角,利用同角三角函数基本关系式可求cosA,利用三角形内角和定理,两角和的正弦函数公式可求sinC的值,利用正弦定理即可得解AB的值.(2)利用余弦定理推出a2+b2<c2,利用正弦定理推出a2+b2<4R2.(3)分类讨论判断三角形的形状与两边a,b的关系,以及与直径的大小的比较,分类讨论即可.【解答】解:(1)∵R=2,a=2,B=45°,∴由正弦定理可得:,解得:sinA=,b=2,又∵a<b,可得:A<B,可得cosA==,∴sinC=sin(A+B)=sinAcosB+cosAsinB==,∴AB=c=4sinC=4×=.证明:(2)由余弦定理得cosC=,∵C为钝角,可得cosC<0,∴a2+b2<c2又∵由正弦定理得c=2RsinC<2R,∴c2<4R2,∴a2+b2<4R2.解:(3)①a>2R≥b或a≥b≥2R时,不存在;②当a=2R且b<2R时,A=90°,存在一个,c=;③当a=b<2R,∠A=∠B且都是锐角sinA=sinB=时,△ABC存在且只有一个,c=2RsinC=;④当b<a<2R,存在两个,c=.
20.某厂借嫦娥奔月的东风,推出品牌为“玉兔”的新产品,生产“玉兔”的固定成本为20000元,每生产一件“玉兔”需要增加投入100元,根据初步测算,总收益满足函数,其中x是“玉兔”的月产量.(1)将利润f(x)表示为月产量x的函数;(2)当月产量为何值时,该厂所获利润最大?最大利润是多少?(总收益=总成本+利润)参考答案:【考点】函数模型的选择与应用.【分析】(1)由题意,由总收益=总成本+利润可知,分0≤x≤400及x>400求利润,利用分段函数表示;(2)在0≤x≤400及x>400分别求函数的最大值或取值范围,从而确定函数的最大值.从而得到最大利润.【解答】解:(1)由题意,当0≤x≤400时,f(x)=400x﹣0.5x2﹣20000﹣100x=300x﹣0.5x2﹣20000;当x>400时,f(x)=80000﹣100x﹣20000=60000﹣100x;故(2)当0≤x≤400时,f(x)=300x﹣0.5x2﹣20000;当x=300时,f(x)max=f当x>400时,f(x)max<f∵25000>20000,∴当x=300时,该厂所获利润最大,最大利润为25000元.21.(8分)在中,内角所对的边长分别是.(1)若,且的面积为,求的值;(2)若,试判断的形状.参考答案:解得a=2,b=2.(4分)(2)由sinC+sin(B-A)=sin2A,得sin(A+B)+sin(B-A)=2sinAcosA,即2sinBcosA=2sinAcosA,∴cosA·(sinA-sinB)=0,∴cosA=0或sinA-sinB=0,当cosA=0时,∵0<A<π,∴A=,△ABC为直角三角形;当sinA-sinB=0时,得sinB=sinA,由正弦定理得a=b,即△ABC为等腰三角形.∴△ABC为等腰三角形或直角三角形.(8分)22.已知{an}是递增数列,其前n项和为Sn,,且,.(1)求数列{an}的通项an;(2)是否存在使得成立?若存在,写出一组符合条件的m,n,k的值;若不存在,请说明理由;(3)设,若对于任意的,不等式恒成立,求正整数的最大值.参考答案:(1)(2)不存在(3)8【详解】(1),得,解得,或.由于,所以.因为,所以.故,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 预防医学模拟考试题(含参考答案)
- 康乐部足浴管理制度
- 村民饮水设备管理制度
- 单位院内外管理制度
- 车间内叉车管理制度
- 抖音直播设备管理制度
- 某家族祠堂管理制度
- 化学危害品管理制度
- 教师培训出勤管理制度
- 残疾人驾驶培训管理制度
- 装修公司合同保密协议书
- 2025-2030中国公路建设行业发展分析及发展前景与趋势预测研究报告
- 2025购销茶叶合同范本
- 户外场地安全课件
- 研究我国平台企业在社会责任履行及其治理机制的现状与问题
- 叉车使用安全协议书
- ai训练师面试题及答案
- 2024-2025学年人教版数学五年级下学期期末试卷(含答案)
- 安全管理:承包商安全管理制度(模板)
- 2025年湖北省新华书店(集团)有限公司招聘笔试参考题库附带答案详解
- 2025年宣城郎溪开创控股集团有限公司下属子公司招聘12人笔试参考题库附带答案详解
评论
0/150
提交评论