版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省宁波市翠柏中学高一数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列图象中不能作为函数图象的是(
) 参考答案:B略2.某人要制作一个三角形,要求它的三条高的长度分别为,则此人将(
)A.不能作出这样的三角形
B.作出一个锐角三角形C.作出一个直角三角形
D.作出一个钝角三角形参考答案:B3.设集合,则满足的集合的个数是(
)
参考答案:C略4.如果A=,那么
(
)A.
B.
C.
D.参考答案:D略5.设,,若3是与的等比中项,则的最小值为(
)A. B.3 C. D.4参考答案:A【分析】由题得,再利用基本不等式求最值得解.【详解】因为是与的等比中项,所以.所以当且仅当时取等故选:A【点睛】本题主要考查基本不等式求最值,考查等比中项的应用,意在考查学生对这些知识的理解掌握水平.6.下列函数中,最小值为4的是()A.y=x+ B.y=sinx+(0<x<π)C.y=ex+4e﹣x D.y=+参考答案:C【考点】7F:基本不等式.【分析】利用基本不等式的性质即可判断出.【解答】解:A.∵可取x<0,∴最小值不可能为4;B.∵0<x<π,∴0<sinx≤1,∴=4,其最小值大于4;C.∵ex>0,∴y=ex+4e﹣x=4,当且仅当ex=2,即x=ln2时取等号,其最小值为4,正确;D.∵,∴=2,当且仅当x=±1时取等号,其最小值为.综上可知:只有C符合.故选:C.7.若直线和圆相切与点,则的值为(
)A.
B.
C.
D.参考答案:C8.函数对任意实数均有成立,且,则与的大小关系为
(
)A.
B.C.
D.大小关系不能确定参考答案:A9.对于任意实数a、b、c、d,下列结论中正确的个数是()①若a>b,c≠0,则ac>bc;②若a>b,则ac2>bc2;③若ac2>bc2,则a>b.A.0 B.1 C.2 D.3参考答案:B【考点】72:不等式比较大小.【分析】根据不等式的性质,可知当c<0,ac<bc,故①错误;当c=0时,则ac2=bc2,故②错误;③正确.【解答】解:对于①,由a>b,当c<0,ac<bc,故①错误;对于②:若a>b,当c=0时,则ac2=bc2,故②错误;对于③:若ac2>bc2,则a>b,故③正确,故选B.【点评】本题考查不等式的性质,采用特殊值代入法,属于基础题.10.若角α满足α=45°+k·180°,k∈Z,则角α的终边落在()A.第一或第三象限
B.第一或第二象限C.第二或第四象限
D.第三或第四象限参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.设奇函数f(x)的定义域为[-5,5],在上是减函数,又f(-3)=0,则
不等式xf(x)<0的解集是
.参考答案:12.已知函数(x∈[2,6]),则f(x)的值域是.参考答案:【考点】函数的值域.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】由y=x,y=在[2,6]上的单调性,可得函数(x∈[2,6])为增函数,从而求出函数的最值得答案.【解答】解:∵函数y=x在[2,6]上为增函数,y=在[2,6]上为减函数,∴函数(x∈[2,6])为增函数,则.故答案为:.【点评】本题考查函数值域的求法,训练了利用函数单调性求函数的值域,是中档题.13.设,用二分法求方程内近似解的过程中得则方程的根落在区间____________.参考答案:(1.25,1.5)略14.已知函数f(x)=()x的图象与函数g(x)的图象关于直线y=x对称,令h(x)=g(1﹣|x|),则关于h(x)有下列命题:①h(x)的图象关于原点对称;②h(x)为偶函数;③h(x)的最小值为0;④h(x)在(0,1)上为减函数.其中正确命题的序号为:.参考答案:②③【考点】四种命题的真假关系;函数的最值及其几何意义;函数奇偶性的判断;奇偶函数图象的对称性.【分析】根据题意画出h(x)的图象就一目了然.【解答】解:根据题意可知g(x)=(x>0)∴(1﹣|x|)>0∴﹣1<x<1∴函数h(x)的图象为∴②③正确.15.在中,角所对的边为,且,,则等于___________。参考答案:4换成正、余弦后,同时用正、余弦定理转换成边长即可解决.16.一条河的两岸平行,河的宽度为560m,一艘船从一岸出发到河对岸,已知船的静水速度,水流速度,则行驶航程最短时,所用时间是__________min(精确到1min).参考答案:6【分析】先确定船的方向,再求出船的速度和时间.【详解】因为行程最短,所以船应该朝上游的方向行驶,所以船的速度为km/h,所以所用时间是.故答案为:6【点睛】本题主要考查平面向量的应用,意在考查学生对该知识的理解掌握水平,属于基础题.17.如图所示的算法中,令,,,若在集合中,给取一个值,输出的结果是,则的值所在范围是
*******
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.参考答案:【考点】正弦定理的应用;余弦定理的应用.【分析】(1)根据正弦定理将边的关系化为角的关系,然后即可求出角B的正弦值,再由△ABC为锐角三角形可得答案.(2)根据(1)中所求角B的值,和余弦定理直接可求b的值.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)根据余弦定理,得b2=a2+c2﹣2accosB=27+25﹣45=7.所以,.19.已知函数(1)求出使取最大值、最小值时的集合;(2)用五点法画出它在一个周期内的闭区间上的图象;
参考答案:略20.(16分)如图,已知扇形周长2+π,面积为,且|+|=1.(1)求∠AOB的大小;(2)如图所示,当点C在以O为圆心的圆弧上变动.若=x+y,其中x、y∈R,求xy的最大值与最小值的和;(3)若点C、D在以O为圆心的圆上,且=.问与的夹角θ取何值时,?的值最大?并求出这个最大值.参考答案:考点: 平面向量数量积的运算;平面向量的基本定理及其意义;弧度制的应用.专题: 平面向量及应用.分析: (1)设扇形的半径为r,∠AOB=θ.利用扇形面积计算公式与弧长公式可得,解得即可;(2)如图所示,建立直角坐标系.则A(1,0),B.设C(cosα,sinα)..由于=x+y,可得,可得xy=+,即可得出最值.(3)设C(cosα,sinα),由=,可得D(﹣cosα,﹣sinα),由(2)可得:?=?(﹣cosα﹣1,﹣sinα)=﹣.由α∈[0,2π),可得∈,∈[﹣1,1].可得?的最大值为,当=,取得最大值.此时=,=.再利用向量夹角公式可得cosθ==,即可得出.解答: (1)设扇形的半径为r,∠AOB=θ.∵扇形周长2+π,面积为,∴,解得.∴∠AOB=.(2)如图所示,建立直角坐标系.则A(1,0),B.设C(cosα,sinα)..∵=x+y,∴,解得,∴xy=+=+=+,∵,∴∈.∴∈,∴xy∈[0,1].∴xy的最大值与最小值的和为1.(3)设C(cosα,sinα),∵=,∴D(﹣cosα,﹣sinα),由(2)可得:?=?(﹣cosα﹣1,﹣sinα)=﹣=﹣﹣﹣==﹣.∵α∈[0,2π),∴∈,∴∈[﹣1,1].∴?的最大值为,当=,即时,取得最大值.此时=,=.∴=,=,==.∴cosθ===,∴.∴与的夹角θ=,?的值最大为.点评: 本题考查了数量积运算性质、向量夹角公式、扇形的弧长与面积计算公式、三角函数化简与计算,考查了推理能力与计算能力,属于难题.21.在,(1) 求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农村股权转让合同模板
- 冲压设备租赁合同范例
- 代还债务合同范例
- 商场运营合同范例
- 以工代赈项目施工合同范例
- 保姆聘请合同范例
- 丽阳星城二期拆除合同范例
- 企业法人劳动合同范例
- 公寓出租租赁合同范例
- 2024年人工智能技术研发分包劳务合同
- 【语文】宁波市小学四年级上册期中试卷
- 《埃隆·马斯克传》导读
- 环保设施安全风险评估报告
- MOOC创新创业与管理基础(东南大学)
- 【基于活动理论的信息技术课程教学研究8300字(论文)】
- 年产15万吨PET的生产工艺设计-毕业论文
- 车间生产计划完成情况统计表
- 品管圈(QCC)降低ICU护士床头交接班缺陷率课件
- 《左道:中国宗教文化中的神与魔》读书笔记模板
- 施工现场临时用电安全技术规范
- 同仁堂药品目录
评论
0/150
提交评论