《角平分线》课件-2022年北师大版九上_第1页
《角平分线》课件-2022年北师大版九上_第2页
《角平分线》课件-2022年北师大版九上_第3页
《角平分线》课件-2022年北师大版九上_第4页
《角平分线》课件-2022年北师大版九上_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.4角平分线九年级数学(上)第一章证明〔二〕驶向胜利的彼岸角平分线你还能利用折纸的方法得到角平分线及角平分线上的点吗?回顾思考:如图,OC是∠AOB的平分线,P是OC上任意一点,PD⊥OA,PE⊥OB,垂足分别是D,E.求证:PD=PE.而△OPD≌△OPB的条件由易知它满足公理(AAS).故结论可证.老师期望:你能写出标准的证明过程.分析:要证明PD=PE,只要证明它们所在的△OPD≌△OPB,你还记得角平分线上的点有什么性质吗?角平分线上的点到这个角的两边距离相等.你能证明这一结论吗?OCB1A2PDE驶向胜利的彼岸几何的三种语言定理角平分线上的点到这个角的两边距离相等.老师提示:这个结论是经常用来证明两条线段相等的根据之一.开启智慧如图,∵OC是∠AOB的平分线,P是OC上任意一点,PD⊥OA,PE⊥OB,垂足分别是D,E()∴PD=PE(角平分线上的点到这个角的两边距离相等).OCB1A2PDE进步的标志′驶向胜利的彼岸思考分析你能写出“定理角平分线上的点到这个角的两边距离相等〞的逆命题吗?逆命题在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上.它是真命题吗?如果是.请你证明它.:如图,PA=PB,PD⊥OA,PE⊥OB,垂足分别是D,E.求证:点P在∠AOB的平分线上.分析:要证明点P在∠AOB的平分线上,可以先作出过点P的射线OC,然后证明∠1=∠2.老师期望:你能写出标准的证明过程.OCB1A2PDE驶向胜利的彼岸逆定理

我能行1逆定理在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上.如图,∵PA=PB,PD⊥OA,PE⊥OB,垂足分别是D,E(),∴点P在∠AOB的平分线上.(在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上).老师提示:这个结论又是经常用来证明点在直线上(或直线经过某一点)的根据之一.从这个结果出发,你还能联想到什么?OCB1A2PDE驶向胜利的彼岸尺规作图

做一做1:∠AOB,如图.求作:射线OC,使∠AOC=∠BOC.作法:用尺规作角的平分线.1.在OAT和OB上分别截取OD,OE,使OD=OE.2.分别以点D和E为圆心,以大于DE/2长为半径作弧,两弧在∠AOB内交于点C..3.作射线OC.请你说明OC为什么是∠AOB的平分线,并与同伴进行交流.老师提示:作角平分线是最根本的尺规作图,这种方法要确实掌握.ABOC那么射线OC就是∠AOB的平分线.DE挑战自我

随堂练习1驶向胜利的彼岸如图,AD,AE分别是△ABC中∠A的内角平分线外角平分线,它们有什么关系?老师期望:你能说出结论并能证明它.EDABCF梦想成真

随堂练习22.如图,一目标在A区,到期公路,铁路距离相等,离公路与铁路的交叉处500m.在图上标出它的位置(比例尺1:20000).A区回味无穷定理角平分线上的点到这个角的两边距离相等.∵OC是∠AOB的平分线,P是OC上任意一点,PD⊥OA,PE⊥OB,垂足分别是D,E()∴PD=PE(角平分线上的点到这个角的两边距离相等).逆定理在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上.∵PA=PB,PD⊥OA,PE⊥OB,垂足分别是D,E(),∴点P在∠AOB的平分线上.(在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上).用尺规作角的平分线.小结拓展OCB1A2PDE习题

独立作业1驶向胜利的彼岸1.利用尺规作出三角形三个内角的平分线.

老师期望:先分别作出不同形状的三角形,再按要求去作图.你发现了什么?

独立作业2驶向胜利的彼岸2.如图,求作一点P,使PC=PD,并且点P到∠AOB的两边的距离相等.老师期望:养成用数学解释生活的习惯.C●D●ABO

独立作业3驶向胜利的彼岸3.:如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别是E,F.求证:EB=FC.老师期望:做完题目后,一定要“悟〞到点东西,纳入到自己的认知结构中去.BAEDCF有一组邻边相等的平行四边形叫做菱形。3.菱形的性质1.菱形的定义〔A〕菱形的四条边都相等〔B〕菱形的对角线互相垂直2.菱形的特征菱形是一个轴对称图形我们可以根据定义来判定一个四边形是菱形.除此之外,还能找到其他的判定方法吗?菱形的性质“两条对角线互相垂直平分〞中,“对角线互相平分〞是平行四边形所具有的一般性质,而“对角线垂直〞是菱形所特有的性质。由此,可以得到一个猜测:“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是一个菱形。〞如图,取两根长度不等的细木棒,让两个木棒的中点重合并固定在一起,用笔和直尺画出木棒四个端点的连线。我们知道,这样得到的四边形是一个平行四边形.假设转动其中一个木棒,重复上面的做法,当两个木棒之间的夹角等于90°时,得到的图形是什么图形呢?如图,你还可以作一个两条对角线互相垂直的平行四边形.和你的同伴交换一下,看看是否成了一个菱形.由此可以得到判定菱形的一种方法:对角线互相垂直的平行四边形是菱形.如图,平行四边形ABCD中,对角线AC、BD互相垂直,我们可以证明:四边形ABCD是菱形.证明∵四边形ABCD是平行四边形∴OA=OC又∵AC⊥BD∴BD所在直线是线段AC的垂直平分线∴AB=BC∴四边形ABCD是菱形例如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证:四边形AFCE是菱形.分析要证四边形AFCE是菱形,由条件可知EF⊥AC,所以只需证明四边形AFCE是平行四边形,又EF垂直平分AC,所以只需证OE=OF.证明∵四边形ABCD是平行四边形∴AE∥FC∴∠1=∠2∵EF平分AC∴AO=OC又∵∠AOE=∠COF=90°∴△AOE≌△COF∴EO=FO∴四边形AFCE是平行四边形又∵EF⊥AC∴四边形AFCE是菱形对于一个一般的四边形,能否也可以找到判定它是不是菱形的方法呢?由菱形的另一条性质“四条边都相等〞,你可能会想到:如果一个四边形的四条边都相等,那它会不会一定是菱形?试着画一画,与周围的同学讨论,猜一猜结论是否成立.由此我们得到了判定菱形的又一种方法:四条边都相等的四边形是菱形.其实,这个结论同样是正确的.这里的条件能否再减少一些呢?能否类似对矩形的讨论那样,有三条边相等的四边形就是菱形了呢?猜一猜,并试着画一画,你就会知道,这个结论是不成立的.菱形的判定方法1.有一组邻边相等的平行四边形是菱形3.四条边都相等的四边形是菱形2.对角线互相垂直的平行四边形是菱形1.以下条件中,不能判定四边形ABCD为菱形的是〔〕.A.AC⊥BD,AC与BD互相平分B.AB=BC=CD=DAC.AB=BC,AD=CD,且AC⊥BDD.AB=CD,AD=BC,AC⊥BDOADCBC2.:如图,在平行四边形ABCD中,AE平分∠BAD,与BC相交于点E,EF//AB,与AD相交于点F.求证:四边形ABEF是菱形.ABCDEF3.如图,在△AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论