




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省阜阳市贾岗中学2021-2022学年高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知一个算法,其流程图如图所示,则输出的结果是()A.3 B.9 C.27 D.81参考答案:D【考点】程序框图.【分析】根据框图的流程模拟运行程序,直到满足条件a>30,跳出循环,计算输出a的值.【解答】解:由程序框图知:第一次循环a=3×1=3;第二次循环a=3×3=9;第三次循环a=3×9=27;第四次循环a=3×27=81,满足条件a>30,跳出循环,输出a=81.故选:D.2.命题“且的否定形式是()A.且B.或C.且D.或参考答案:D根据全称命题的否定是特称命题,可知选D.考点:命题的否定3.小明早上步行从家到学校要经过有红绿灯的两个路口,根据经验,在第一个路口遇到红灯的概率为0.4,在第二个路口遇到红灯的概率为0.5,在两个路口连续遇到红灯的概率是0.2.某天早上小明在第一个路口遇到了红灯,则他在第二个路口也遇到红灯的概率是(
)A.0.2 B.0.3 C.0.4 D.0.5参考答案:D【分析】根据条件概率,即可求得在第一个路口遇到红灯,在第二个路口也遇到红灯的概率。【详解】记“小明在第一个路口遇到红灯”为事件,“小明在第二个路口遇到红灯”为事件“小明在第一个路口遇到了红灯,在第二个路口也遇到红灯”为事件则,,故选D.【点睛】本题考查了条件概率的简单应用,属于基础题。4.已知某三棱锥的三视图(单位:cm)如图所示,那么该三棱锥的体积等于()A.cm3B.2cm3C.3cm3D.9cm3参考答案:A【考点】由三视图求面积、体积.【分析】该三棱锥高为3,底面为直角三角形.【解答】解:由三视图可知,该三棱锥的底面为直角三角形,两个侧面和底面两两垂直,∴V=××3×1×3=.故选A.5.已知m、l是两条不同的直线,α、β是两个不同的平面,且m⊥α,l∥β,则下列说法正确的是()A.若m∥l,则α∥β B.若α⊥β,则m∥l C.若m⊥l,则α∥β D.若α∥β,则m⊥l参考答案:D【考点】空间中直线与平面之间的位置关系.【分析】根据空间直线和平面、平面和平面平行或垂直的判定定理和性质定理分别进行判断即可.【解答】解:若m∥l,m⊥α,则l⊥α,又l∥β,则α⊥β,即A不正确;若α⊥β,则m、l位置不确定,即B不正确;若m⊥l,则α∥β或α,β相交,即C不正确;若m⊥α,α∥β,则m⊥β,又l∥β,则m⊥l,即D正确,故选D.6.抛物线的焦点坐标是(
)A.(4,0)
B.(2,0)
C.(1,0)
D.(,0)参考答案:C,抛物线的焦点是,故选C;7.如图,ABCD-A1B1C1D1为正方体,下面结论错误的是A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1D1D.异面直线AD与CB1所成的角为60°参考答案:D8.“1<m<3”是“方程表示椭圆”的()A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件参考答案:B9.为坐标原点,为抛物线的焦点,为上一点,若,则的面积为 ()A. B. C. D.参考答案:C10.双曲线﹣y2=1的实轴长为()A.4 B.2 C. D.1参考答案:A【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】求出双曲线的a=2,即可得到双曲线的实轴长2a.【解答】解:双曲线﹣y2=1的a=2,则双曲线的实轴长为2a=4,故选A.【点评】本题考查双曲线的方程和性质,考查实轴的概念,考查运算能力,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.命题“?x∈R,x2﹣x+1>0”的否定是.参考答案:【考点】命题的否定.【专题】计算题.【分析】根据命题的否定的规则进行求解,注意“任意”的“否定”为存在;【解答】解:∵命题“?x∈R,x2﹣x+1>0”∵“任意”的否定为“存在”∴命题的否定为:,故答案为:【点评】此题主要考查命题的否定规则,是一道基础题,注意常见的否定词;12.(+x)dx=.参考答案:【考点】定积分.【分析】利用定积分的法则分步积分以及几何意义解答.【解答】解:∵dx表示已原点为圆心,以1为半径的圆的面积的四分之一,∴dx=π,∴(+x)dx=dx+xdx=+x2|=,故答案为:.13.已知椭圆的离心率是,过椭圆上一点作直线交椭圆于两点,且斜率分别为,若点关于原点对称,则的值为
。参考答案:14.某种平面分形如图所示,以及分形图是有一点出发的三条线段,二级分形图是在一级分形图的每条线段的末端出发在生成两条线段,…,依次规律得到n级分形图,那么n级分形图中共有
条线段.参考答案:3?2n﹣3n级分形图中的线段条数是以3为首项,2为公比的等比数列的和;解:n级分形图中的线段条数是以3为首项,2为公比的等比数列的和,即=3?2n﹣3;故答案为:3?2n﹣315.若正实数a,b满足,则函数的零点的最大值为______.参考答案:【分析】根据题意,先求出函数的零点,,然后换元,转化为求的最大值,求导取得其单调性,转化为求t的最大值,再令,再根据单调性求最大值,最后求得结果.【详解】因为正实数满足,则函数的零点令所以零点的最大值就相当于求的最大值令,所以函数是单调递减的,当t取最小值时,f(t)取最大值又因为,a+b=1所以令,令,解得,此时递增,解得,此时递减,所以此时故答案为【点睛】本题主要考查了导函数的应用问题,解题的关键是换元构造新的函数,求其导函数,判断原函数的单调性求其最值,易错点是换元后一定要注意换元后的取值范围,属于难题.16.曲线在点处的切线方程为__________.参考答案:【分析】先对函数求导,求出在点的切线斜率,再由点斜式,即可得出切线方程.【详解】因为,所以,所以.又因为,所以切线方程为,即.故答案为【点睛】本题主要考查求曲线在某点处的切线方程,熟记导数的几何意义即可,属于常考题型.17.直线经过,且在轴上的截距等于在轴上的截距的2倍的直线方程为
.参考答案:或
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(13分)已知椭圆C的两焦点分别为,长轴长为6,
(1)求椭圆C的标准方程;
(2)已知过点且斜率为1的直线交椭圆C于A、B两点,求线段AB的长度.参考答案:(1)由,长轴长为6
得:所以
∴椭圆方程为
……6分
(2)设,由⑴可知椭圆方程为①,
∵直线AB的方程为
②……………8分
把②代入①得化简并整理得
∴
………10分
又 ………13分19.(本题满分16分)为了庆祝江苏省启东中学九十周年校庆,展示江苏省启东中学九十年来的办学成果及优秀校友风采,学校准备校庆期间搭建一个扇形展览区,如图,是一个半径为2百米,圆心角为的扇形展示区的平面示意图.点C是半径OB上一点(异于O,B两点),点D是圆弧上一点,且.为了实现“以展养展”现在决定:在线段OC、线段CD及圆弧三段所示位置设立广告位,经测算广告位出租收入是:线段OC处每百米为2a元,线段CD及圆弧处每百米均为a元.设弧度,广告位出租的总收入为y元.(1)求y关于x的函数解析式,并指出该函数的定义域;(2)试问x为何值时,广告位出租的总收入最大,并求出其最大值.参考答案:(1)因为∥,所以,在△中,,,百米,由正弦定理得,
…………4分得km,百米.…………5分又圆弧长为百米.所以,.…………7分(2)记,则,………………8分令,得.
……………………9分当x变化时,,的变化如下表:
x+0-递增极大值递减
所以在处取得极大值,这个极大值就是最大值.即.………15答:(1),定义域为;(2)广告位出租的总收入的最大值为元.………16分
20.已知四棱锥S﹣ABCD,底面为正方形,SA⊥底面ABCD,AB=AS=a,M,N分别为AB,AS中点.(1)求证:BC⊥平面SAB;(2)求证:MN∥平面SAD;(3)求四棱锥S﹣ABCD的表面积.参考答案:【考点】LW:直线与平面垂直的判定;LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行的判定.【分析】(1)证明SA⊥BC,BC⊥AB,SA∩AB=A,即可证明BC⊥平面SAB;(2)取SD中点P,利用三角形的中位线的性质证得AMNP是平行四边形,可得MN∥AP.再根据直线和平面平行的判定的定理证得MN∥平面SAD.(3)由条件可得△SAB≌△SAD,△SBC≌△SCD,再根据S表面积=2S△SAB+2S△SBC+SABCD运算求得结果.【解答】(1)证明:∵SA⊥底面ABCD,∴SA⊥AB,SA⊥AD,SA⊥BC,又∵BC⊥AB,SA∩AB=A,∴BC⊥平面SAB;(2)证明:取SD中点P,连接MN、NP、PA,则NP=CD,且NP∥CD,又∵AM=CD,且AM∥CD,∴NP=AM,NP∥AM,∴AMNP是平行四边形,∴MN∥AP,∵AP?平面SAD,MN?平面SAD∴MN∥平面SAD;(3)解:∵BC⊥平面SAB,∴BC⊥SB,同理,CD⊥SD,∴△SAB≌△SAD,△SBC≌△SCD,又∵SB=a,∴S表面积=2S△SAB+2S△SBC+SABCD=.21.(本小题满分14分)已知向量,函数,.
(Ⅰ)求的最小值;
(Ⅱ)若,求的值.参考答案:解:(Ⅰ)
4分因为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省无锡市锡东片2024-2025学年初三化学试题第一次统练(一模)试题含解析
- 道路铺设工程施工合同
- 天津市宁河县芦台五中重点名校2024-2025学年初三第一次诊断性考试英语试题文试题含答案
- 服务合同委托协议
- 2024-2025学年度辽宁省大连普兰店区三十八中学高一第二学期联考历史试题(含答案)
- 版工程人员劳务分包合同
- 货物采购合同中英文对照
- 一年级道德与法治下册 第三单元 绿色生活真美好 第7课《清清家乡水》教学设计 粤教版
- 1 尊重他人 表格式公开课一等奖创新教案-统编版道德与法治八年级上册
- 维吾尔民间舞蹈的风格特点
- 急救医疗资源整合优化研究
- 达人采风活动方案
- 制造业本季度总结与下季度规划
- 大健康加盟项目计划书
- 幼儿园课程图景课程实施方案编制指南
- 气管狭窄患者的护理查房课件
- 大型客车驱动桥设计
- 钢筋挂篮计算书
- 扎钢机控制系统的MCGS界面控制设计
- 超声波探伤作业指导书
- 微风发电系统施工方案
评论
0/150
提交评论