山西省吕梁市李家湾村中学高一数学理下学期期末试题含解析_第1页
山西省吕梁市李家湾村中学高一数学理下学期期末试题含解析_第2页
山西省吕梁市李家湾村中学高一数学理下学期期末试题含解析_第3页
山西省吕梁市李家湾村中学高一数学理下学期期末试题含解析_第4页
山西省吕梁市李家湾村中学高一数学理下学期期末试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省吕梁市李家湾村中学高一数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如果幂函数的图象不过原点,则的取值是()A.

B.或

C.

D.参考答案:B略2.已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集的个数共有()A.2个

B.4个

C.6个

D.8个参考答案:B3.下列函数中与函数相同的是

(

)

A.

B.

C.

D.参考答案:D略4.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥

而不对立的两个事件是(

)A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“都是红球”C.“至少有一个黑球”与“至少有一个红球”D.“恰有一个黑球”与“恰有两个黑球”参考答案:D5.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积与原三角形面积的比值为A.

B.2

C.

D.参考答案:C

6.下列各组中的两个函数是同一函数的为①,;②,;③,;④,;⑤,

(A)①②

(B)②③

(C)④

(D)③⑤参考答案:C7.若不等式对任意都成立,则的取值范围是(

)A.

B.

C.

D.

参考答案:B8.下列函数在定义域内为奇函数,且有最小值的是(

)A.

B.

C.

D.参考答案:D9.已知函数f(x)是R上的增函数,A(0,﹣1),B(3,1)是其图象上的两点,那么|f(x)|<1的解集是()A.(﹣3,0) B.(0,3) C.(﹣∞,﹣1]∪[3,+∞) D.(﹣∞,0]∪[1,+∞)参考答案:B【考点】函数单调性的性质.【分析】|f(x)|<1等价于﹣1<f(x)<1,根据A(0,﹣1),B(3,1)是其图象上的两点,可得f(0)<f(x)<f(3),利用函数f(x)是R上的增函数,可得结论.【解答】解:|f(x)|<1等价于﹣1<f(x)<1,∵A(0,﹣1),B(3,1)是其图象上的两点,∴f(0)<f(x)<f(3)∵函数f(x)是R上的增函数,∴0<x<3∴|f(x)|<1的解集是(0,3)故选:B.10.已知正实数a,b,c,d满足,则下列不等式不正确的是(

)A.

B.

C.

D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.时钟从6时走到9时,时针旋转了_____________弧度参考答案:试题分析:因为是顺时针所以是负角,时钟从6时走到9时,所转过的弧度数为,所以时针旋转了弧度.考点:弧度12.函数的对称中心为:

;参考答案:令所以函数的对称中心为.

13.(4分)当0<x<时,函数f(x)=的最大值是

.参考答案:﹣考点: 函数最值的应用.专题: 函数的性质及应用.分析: 根据1的代换,利用换元法将函数进行转化,利用一元二次函数的性质进行求解.解答: 解:f(x)===tanx﹣(tanx)2﹣1,设t=tanx,∵0<x<,∴0<tanx<1,即0<t<1,则函数f(x)等价为y=﹣t2+t﹣1=﹣(t﹣)2﹣,∴当t=时,函数取得最大﹣,故答案为:﹣点评: 本题主要考查函数最值的求解,根据条件利用换元法结合一元二次函数的单调性的性质是解决本题的关键.14.cos660°=.参考答案:【考点】运用诱导公式化简求值.【分析】由条件利用利用诱导公式进行化简求值,可得结果.【解答】解:cos660°=cos=cos(﹣60°)=cos60°=,故答案为:.15.已知函数f(x)=mx﹣1,g(x)=x2﹣(m+1)x﹣1,若对任意的x0>0,f(x0)与g(x0)的值不异号,则实数m的值为.参考答案:略16.若函数为R上的偶函数,则k=

参考答案:函数,,函数为上的偶函数,,即,故,化简得,则解得故答案为

17.已知等差数列{an}的前n项和记为Sn,若.,则______;______.参考答案:

-12

【分析】根据等差数列和项性质求.根据首项与公差求.【详解】因为等差数列中仍成等差数列,所以,因为,所以,【点睛】本题考查等差数列求和公式以及性质,考查基本分析求解能力,属中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(1)求证:PO⊥平面ABCD;(2)求异面直线PB与CD所成角的余弦值;(3)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出的值;若不存在,请说明理由.参考答案:【考点】MK:点、线、面间的距离计算;LM:异面直线及其所成的角;LW:直线与平面垂直的判定.【分析】(1)根据线面垂直的判定定理可知,只需证直线PO垂直平面ABCD中的两条相交直线垂直即可;(2)先通过平移将两条异面直线平移到同一个起点B,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可;(3)利用Vp﹣DQC=VQ﹣PCD,即可得出结论.【解答】(1)证明:在△PAD卡中PA=PD,O为AD中点,所以PO⊥AD.又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO?平面PAD,所以PO⊥平面ABCD.(2)解:连接BO,在直角梯形ABCD中,BC∥AD,AD=2AB=2BC,有OD∥BC且OD=BC,所以四边形OBCD是平行四边形,所以OB∥DC.由(1)知PO⊥OB,∠PBO为锐角,所以∠PBO是异面直线PB与CD所成的角.因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以OB=,在Rt△POA中,因为AP=,AO=1,所以OP=1,在Rt△PBO中,PB=,所以cos∠PBO=,所以异面直线PB与CD所成的角的余弦值为.(3)解:假设存在点Q,使得它到平面PCD的距离为.设QD=x,则S△DQC=x,由(2)得CD=OB=,在Rt△POC中,PC=,所以PC=CD=DP,S△PCD==,由Vp﹣DQC=VQ﹣PCD,得x=,所以存在点Q满足题意,此时=.19.已知数列{an}的前n项和为Sn,Sn=(an﹣1)(n∈N*)(1)求a1,a2,a3的值.(2)求an的通项公式.参考答案:【考点】数列递推式;数列的求和.【分析】(1)先把n=1代入Sn=(an﹣1)可以求得首项,再把n=2,3依次代入即可求出a2,a3的值.(2)直接利用an和Sn的关系:an=Sn﹣Sn﹣1(n≥2)得到数列的递推关系,再整理得到规律即可求出数列的通项公式.【解答】解:(1)由S1=a1=(a1﹣1),得a1=﹣.S2=a1+a2=(a2﹣1)得同理.(2)当n≥2时,an=sn﹣sn﹣1=(an﹣1)﹣(an﹣1﹣1)?﹣2an=an﹣1?=﹣所以数列{an}是首项为﹣,公比为﹣的等比数列.所以an=【点评】本题第二问考查了已知前n项和为Sn求数列{an}的通项公式,根据an和Sn的关系:an=Sn﹣Sn﹣1(n≥2)求解数列的通项公式.另外,须注意公式成立的前提是n≥2,所以要验证n=1时通项是否成立,若成立则:an=Sn﹣Sn﹣1(n≥1);若不成立,则通项公式为分段函数.20.(本小题满分12分)

求圆心在直线上,并且经过点,与直线相切的圆的方程。参考答案:因为点在直线上,所以经过点,与直线相切的圆的圆心在经过点且与直线垂直的直线上,该直线方程是由已知所求圆的圆心在直线上,解方程组得所以圆心的坐标为又因为所以所求圆的方程为21.某市食品药品监督管理局开展2019年春季校园餐饮安全检查,对本市的8所中学食堂进行了原料采购加工标准和卫生标准的检查和评分,其评分情况如下表所示:中学编号12345678原料采购加工标准评分x10095938382757066卫生标准评分y8784838281797775

(1)已知x与y之间具有线性相关关系,求y关于x的线性回归方程;(精确到0.1)(2)现从8个被检查的中学食堂中任意抽取两个组成一组,若两个中学食堂的原料采购加工标准和卫生标准的评分均超过80分,则组成“对比标兵食堂”,求该组被评为“对比标兵食堂”的概率.参考公式:,;参考数据:,.参考答案:(1);(2)【分析】(1)由题意计算、,求出回归系数,写出线性回归方程;(2)用列举法写出基本事件数,计算所求的概率值.【详解】(1)由题意得:,,,.故所求的线性回归方程为:.(2)从8个中学食堂中任选两个,共有共28种结果:,,,,,,,,,,,,,,,,,,,,,,,,,,,.其中原料采购加工标准的评分和卫生标准的评分均超过80分的有10种结果:,,,,,,,,,,所以该组被评为“对比标兵食堂”的概率为.【点睛】本题考查了线性回归方程的求解,考查了利用列举法求古典概型的概率问题,是基础题.22.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的最小正周期为π,其图象的一个对称中心为,将函数f(x)图象上的所有点的横坐标伸长为原来的2倍(纵坐标不变),再将所得图象向右平移个单位长度后得到函数g(x)的图象.(1)求函数f(x)与g(x)的解析式;(2)求实数a与正整数n,使得F(x)=f(x)+ag(x)在(0,nπ)内恰有2017个零点.参考答案:【考点】HJ:函数y=Asin(ωx+φ)的图象变换;H2:正弦函数的图象.【分析】(1)依题意,可求得ω=2,φ=,利用三角函数的图象变换可求得g(x)=sinx;(2)依题意,F(x)=asinx+cos2x,令F(x)=asinx+cos2x=0,方程F(x)=0等价于关于x的方程a=﹣,x≠kπ(k∈Z).问题转化为研究直线y=a与曲线y=h(x),x∈(0,π)∪(π,2π)的交点情况.通过其导数,分析即可求得答案.【解答】解:(1)∵函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,∴ω==2,又曲线y=f(x)的一个对称中心为(,0),φ∈(0,π),故f()=sin(2×+φ)=0,得φ=,∴f(x)=cos2x.将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得y=cosx的图象,再将y=cosx的图象向右平移π个单位长度后得到函数g(x)=cos(x﹣)的图象,∴g(x)=sinx.(2)∵F(x)=f(x)+ag(x)=cos2x+asinx=0,∵sinx≠0,∴a=﹣,令h(x)=﹣=2sinx﹣,h′(x)=2cosx+=,令h′

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论