福建省泉州市泉港二中2023年数学高一下期末综合测试模拟试题含解析_第1页
福建省泉州市泉港二中2023年数学高一下期末综合测试模拟试题含解析_第2页
福建省泉州市泉港二中2023年数学高一下期末综合测试模拟试题含解析_第3页
福建省泉州市泉港二中2023年数学高一下期末综合测试模拟试题含解析_第4页
福建省泉州市泉港二中2023年数学高一下期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若点共线,则的值为()A. B. C. D.2.设集合,则()A. B. C. D.3.已知a>0,b>0,a,b的等比中项为2,则a+1A.3 B.4 C.5 D.424.已知、是球的球面上的两点,,点为该球面上的动点,若三棱锥体积的最大值为,则球的表面积为()A. B. C. D.5.已知为的一个内角,向量.若,则角()A. B. C. D.6.设和分别表示函数的最大值和最小值,则等于()A. B. C. D.7.已知集合,则()A. B. C. D.8.执行如图所示的程序框图,若输入,则输出()A.5 B.8 C.13 D.219.设全集,集合,,则()A. B. C. D.10.下列命题中正确的是()A.第一象限角必是锐角; B.相等的角终边必相同;C.终边相同的角相等; D.不相等的角其终边必不相同.二、填空题:本大题共6小题,每小题5分,共30分。11.设数列是首项为0的递增数列,函数满足:对于任意的实数,总有两个不同的根,则的通项公式是________.12.当时,的最大值为__________.13.执行如图所示的程序框图,则输出的结果为__________.14.已知,则与的夹角等于____.15.已知,则__________.16.已知点和点,点在轴上,若的值最小,则点的坐标为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前n项和为,且,.(1)求数列的通项公式;(2)若等差数列满足,且,,成等比数列,求c.18.已知.(1)求的值;(2)求的值.19.如图,三棱柱中,侧面为菱形,的中点为,且平面.(1)证明:;(2)若,,,试画出二面角的平面角,并求它的余弦值.20.已知函数,的部分图像如图所示,点,,都在的图象上.(1)求的解析式;(2)当时,恒成立,求的取值范围.21.已知角的终边经过点.(1)求的值;(2)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

通过三点共线转化为向量共线,即可得到答案.【详解】由题意,可知,又,点共线,则,即,所以,故选A.【点睛】本题主要考查三点共线的条件,难度较小.2、B【解析】

补集:【详解】因为,所以,选B.【点睛】本题主要考查了集合的运算,需要掌握交集、并集、补集的运算。属于基础题。3、C【解析】

由等比中项得:ab=4,目标式子变形为54【详解】∵a+1等号成立当且仅当a=b=2,∴原式的最小值为5.【点睛】利用基本不等式求最小值时,注意验证等号成立的条件.4、A【解析】

当点位于垂直于面的直径端点时,三棱锥的体积最大,利用三棱锥体积的最大值为,求出半径,即可求出球的表面积.【详解】如图所示,当点位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,.因此,球的表面积为.故选:A.【点睛】本题考查球的半径与表面积的计算,确定点的位置是关键,考查分析问题和解决问题的能力,属于中等题.5、C【解析】

带入计算即可.【详解】即,选C.【点睛】本题考查向量向量垂直的坐标运算,属于基础题.6、C【解析】

根据余弦函数的值域,确定出的最大值和最小值,即可计算出的值.【详解】因为的值域为,所以的最大值,所以的最小值,所以.故选:C.【点睛】本题考查余弦型函数的最值问题,难度较易.求解形如的函数的值域,注意借助余弦函数的有界性进行分析.7、A【解析】

由,得,然后根据集合的交集运算,即可得到本题答案.【详解】因为,所以.故选:A【点睛】本题主要考查集合的交集运算及对数不等式.8、C【解析】

通过程序一步步分析得到结果,从而得到输出结果.【详解】开始:,执行程序:;;;;,执行“否”,输出的值为13,故选C.【点睛】本题主要考查算法框图的输出结果,意在考查学生的分析能力及计算能力,难度不大.9、D【解析】

先求得集合的补集,然后求其与集合的交集,由此得出正确选项.【详解】依题意,所以,故选D.【点睛】本小题主要考查集合补集、交集的概念和运算,属于基础题.10、B【解析】

根据终边相同的角和象限角的定义,举反例或直接进行判断可得最后结果.【详解】是第一象限角,但不是锐角,故A错误;与终边相同,但他们不相等,故C错误;与不相等,但他们的终边相同,故D错误;因为角的始边在x轴的非负半轴上,则相等的角终边必相同,故B正确.故选:B【点睛】本题考查了终边相同的角和象限角的定义,利用定义举出反例进行判断是解决本题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用三角函数的图象与性质、诱导公式和数列的递推公式,可得,再利用“累加”法和等差数列的前n项和公式,即可求解.【详解】由题意,因为,当时,,又因为对任意的实数,总有两个不同的根,所以,所以,又,对任意的实数,总有两个不同的根,所以,又,对任意的实数,总有两个不同的根,所以,由此可得,所以,所以.故答案为:.【点睛】本题主要考查了三角函数的图象与性质的应用,以及诱导公式,数列的递推关系式和“累加”方法等知识的综合应用,着重考查了推理与运算能力,属于中档试题.12、-3.【解析】

将函数的表达式改写为:利用均值不等式得到答案.【详解】当时,故答案为-3【点睛】本题考查了均值不等式,利用一正二定三相等将函数变形是解题的关键.13、1【解析】

由已知中的程序语句可知:该程序的功能是利用循环结构计算S的值并输出变量i的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】模拟程序的运行,可得

S=1,i=1

满足条件S<40,执行循环体,S=3,i=2

满足条件S<40,执行循环体,S=7,i=3

满足条件S<40,执行循环体,S=15,i=4

满足条件S<40,执行循环体,S=31,i=5

满足条件S<40,执行循环体,S=13,i=1

此时,不满足条件S<40,退出循环,输出i的值为1.

故答案为:1.【点睛】本题主要考查的是程序框图,属于基础题.在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.14、【解析】

根据向量的坐标即可求出,根据向量夹角的公式即可求出.【详解】∵,,,,∴,又,∴.故答案为:.【点睛】考查向量坐标的数量积运算,向量坐标求向量长度的方法,以及向量夹角的余弦公式,属于基础题.15、【解析】16、【解析】

作出图形,作点关于轴的对称点,由对称性可知,结合图形可知,当、、三点共线时,取最小值,并求出直线的方程,与轴方程联立,即可求出点的坐标.【详解】如下图所示,作点关于轴的对称点,由对称性可知,则,当且仅当、、三点共线时,的值最小,直线的斜率为,直线的方程为,即,联立,解得,因此,点的坐标为.故答案为:.【点睛】本题考查利用折线段长的最小值求点的坐标,涉及两点关于直线对称性的应用,考查数形结合思想的应用,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)根据题意,数列为1为首项,4为公差的等差数列,根据等差数列通项公式计算即可;(2)由(1)可求数列的前n项和为,根据,,成等差数列及,,成等比数列,利用等差、等比数列性质可求出c.【详解】(1),,,故数列是以1为首项,4为公差的等差数列..(2)由(1)知,,,,,,法1:,,成等比数列,,即,整理得:,或.①当时,,所以(定值),满足为等差数列,②当时,,,,,不满足,故此时数列不为等差数列(舍去).法2:因为为等差数列,所以,即,解得或.①当时,满足,,成等比数列,②当时,,,,不满足,,成等比数列(舍去),综上可得.【点睛】本题考查等差数列的通项及求和,等差数列、等比数列性质的应用,解决此类问题通常借助方程思想列方程(组)求解,属于中等题.18、(1);(2)【解析】

试题分析:(1)利用正切的两角和公式求的值;(2)利用第一问的结果求第二问,但需要先将式子化简,最后变形成关于的式子,需要运用三角函数的倍角公式将化成单角的三角函数,然后分子分母都除以,然后代入的值即可.试题解析:(1)由(2)考点:1.正切的两角和公式;2.正余弦的倍角公式.19、(1)见证明;(2)二面角图见解析;【解析】

(1)由菱形的性质得出,由平面,得出,再利用直线与平面垂直的判定定理证明平面,于是得出;(2)过点在平面内作,垂足为点,连接,可证出平面,于是找出二面角的平面角为,并计算出的三边边长,利用锐角三角函数计算出,即为所求答案.【详解】(1)连接,因为侧面为菱形,所以,且与相交于点.因为平面,平面,所以.又,所以平面因为平面,所以.(2)作,垂足为,连结,因为,,,所以平面,又平面,所以.所以是二面角的平面角.因为,所以为等边三角形,又,所以,所以.因为,所以.所以.在中,.【点睛】本题考查直线与直线垂直的证明,二面角的求解,在这些问题的处理中,主要找出一些垂直关系,二面角的求解一般有以下几种方法:①定义法;②三垂线法;③垂面法;④射影面积法;⑤空间向量法.在求解时,可以灵活利用这些方法去处理.20、(1);(2)【解析】

(1)由三角函数图像,求出即可;(2)求出函数的值域,再列不等式组求解即可.【详解】解:(1)由的图象可知,则,因为,,所以,故.因为在函数的图象上,所以,所以,即,因为,所以.因为点在函数的图象上,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论