




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于()A.π B.πC.16π D.32π2.已知角的终边经过点,则=()A. B. C. D.3.已知点均在球上,,若三棱锥体积的最大值为,则球的体积为A. B. C.32 D.4.英国数学家布鲁克泰勒(TaylorBrook,1685~1731)建立了如下正、余弦公式(
)其中,,例如:.试用上述公式估计的近似值为(精确到0.01)A.0.99 B.0.98 C.0.97
D.0.965.已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是()A.(0,1) B. C. D.6.已知函数,若关于的不等式的解集为,则A. B.C. D.7.已知向量,且,则()A.2 B. C. D.8.已知是不同的直线,是不同的平面,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则9.若向量的夹角为,且,,则向量与向量的夹角为()A. B. C. D.10.若,,则方程有实数根的概率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知求______________.12.函数的最小正周期是______.13.已知函数的部分图象如图所示,则的值为_________.14.已知,,且,则的最小值为________.15.终边经过点,则_____________16.当,时,执行完如图所示的一段程序后,______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆(1)求圆关于直线对称的圆的标准方程;(2)过点的直线被圆截得的弦长为8,求直线的方程;(3)当取何值时,直线与圆相交的弦长最短,并求出最短弦长.18.已知函数,将的图象向左平移个单位后得到的图象,且在区间内的最大值为.(1)求实数的值;(2)求函数与直线相邻交点间距离的最小值.19.已知的内角的对边分别为,若向量,且.(1)求角的值;(2)已知的外接圆半径为,求周长的取值范围.20.已知函数的最小正周期为,将的图象向右平移个单位长度,再向上平移个单位长度得到函数的图象.(1)求函数的解析式;(2)在中,角所对的边分别为,若,且,求周长的取值范围.21.在中,角,,所对的边分别为,,,且.(Ⅰ)求角的大小;(Ⅱ)若的面积为,其外接圆的半径为,求的周长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
作轴截面,圆锥的轴截面是等腰三角形,外接球的截面是圆为球的大圆是的外接圆,由图可得球的半径与圆锥的关系.【详解】如图,作轴截面,圆锥的轴截面是等腰三角形,的外接圆是球的大圆,设该圆锥的外接球的半径为R,依题意得,R2=(3-R)2+()2,解得R=2,所以所求球的体积V=πR3=π×23=π,故选B.【点睛】本题考查球的体积,关键是确定圆锥的外接球与圆锥之间的关系,即球半径与圆锥的高和底面半径之间的联系,而这个联系在其轴截面中正好体现.2、D【解析】试题分析:由题意可知x=-4,y=3,r=5,所以.故选D.考点:三角函数的概念.3、A【解析】
设是的外心,则三棱锥体积最大时,平面,球心在上.由此可计算球半径.【详解】如图,设是的外心,则三棱锥体积最大时,平面,球心在上.∵,∴,即,∴.又,∴,.∵平面,∴,设球半径为,则由得,解得,∴球体积为.故选A.【点睛】本题考查球的体积,关键是确定球心位置求出球的半径.4、B【解析】
利用题设中给出的公式进行化简,即可估算,得到答案.【详解】由题设中的余弦公式得,故答案为B【点睛】本题主要考查了新信息试题的应用,其中解答中理解题意,利用题设中的公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.5、B【解析】
先求得直线y=ax+b(a>0)与x轴的交点为M(,0),由0可得点M在射线OA上.求出直线和BC的交点N的坐标,①若点M和点A重合,求得b;②若点M在点O和点A之间,求得b;③若点M在点A的左侧,求得b>1.再把以上得到的三个b的范围取并集,可得结果.【详解】由题意可得,三角形ABC的面积为1,由于直线y=ax+b(a>0)与x轴的交点为M(,0),由直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,可得b>0,故0,故点M在射线OA上.设直线y=ax+b和BC的交点为N,则由可得点N的坐标为(,).①若点M和点A重合,如图:则点N为线段BC的中点,故N(,),把A、N两点的坐标代入直线y=ax+b,求得a=b.②若点M在点O和点A之间,如图:此时b,点N在点B和点C之间,由题意可得三角形NMB的面积等于,即,即,可得a0,求得b,故有b.③若点M在点A的左侧,则b,由点M的横坐标1,求得b>a.设直线y=ax+b和AC的交点为P,则由求得点P的坐标为(,),此时,由题意可得,三角形CPN的面积等于,即•(1﹣b)•|xN﹣xP|,即(1﹣b)•||,化简可得2(1﹣b)2=|a2﹣1|.由于此时b>a>0,0<a<1,∴2(1﹣b)2=|a2﹣1|=1﹣a2.两边开方可得(1﹣b)1,∴1﹣b,化简可得b>1,故有1b.综上可得b的取值范围应是,故选B.【点睛】本题主要考查确定直线的要素,点到直线的距离公式以及三角形的面积公式的应用,还考查了运算能力以及综合分析能力,分类讨论思想,属于难题.6、B【解析】
由题意可得,且,3为方程的两根,运用韦达定理可得,,的关系,可得的解析式,计算,(1),(4),比较可得所求大小关系.【详解】关于的不等式的解集为,可得,且,3为方程的两根,可得,,即,,,,可得,(1),(4),可得(4)(1),故选.【点睛】本题主要考查二次函数的图象和性质、函数与方程的思想,以及韦达定理的运用。7、B【解析】
根据向量平行得到,再利用和差公式计算得到答案.【详解】向量,且,则..故选:.【点睛】本题考查了向量平行求参数,和差公式,意在考查学生的综合应用能力.8、D【解析】
由线面平行的判定定理即可判断A;由线面垂直的判定定理可判断B;由面面垂直的性质可判断C;由空间中垂直于同一条直线的两平面平行可判断D.【详解】对于A选项,加上条件“”结论才成立;对于B选项,加上条件“直线和相交”结论才成立;对于C选项,加上条件“”结论才成立.故选:D【点睛】本题考查空间直线与平面的位置关系,涉及线面平行的判定、线面垂直的判定、面面垂直的性质,属于基础题.9、B【解析】
结合数量积公式可求得、、的值,代入向量夹角公式即可求解.【详解】设向量与的夹角为,因为的夹角为,且,,所以,,所以,又因为所以,故选B【点睛】本题考查向量的数量积公式,向量模、夹角的求法,考查化简计算的能力,属基础题.10、B【解析】方程有实数根,则:,即:,则:,如图所示,由几何概型计算公式可得,满足题意的概率值为:.本题选择B选项.二、填空题:本大题共6小题,每小题5分,共30分。11、23【解析】
直接利用数量积的坐标表示求解.【详解】由题得.故答案为23【点睛】本题主要考查平面向量的数量积的计算,意在考查学生对该知识的理解掌握水平,属于基础题.12、【解析】
由二倍角的余弦函数公式化简解析式可得,根据三角函数的周期性及其求法即可得解.【详解】.由周期公式可得:.故答案为【点睛】本题主要考查了二倍角的余弦函数公式的应用,考查了三角函数的周期性及其求法,属于基本知识的考查.13、【解析】
根据图像可得,根据0所在位置,处于函数的单调减区间,即可得解.【详解】由图可得:,或由于0在函数的单调减区间内,所以.故答案为:【点睛】此题考查根据三角函数的图象求参数的取值,常用代入法求解,判定初相的取值时,根据图象结合单调性取值.14、【解析】
由,可得,然后利用基本不等式可求出最小值.【详解】因为,所以,当且仅当,时取等号.【点睛】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.15、【解析】
根据正弦值的定义,求得正弦值.【详解】依题意.故答案为:【点睛】本小题主要考查根据角的终边上一点的坐标求正弦值,属于基础题.16、1【解析】
模拟程序运行,可得出结论.【详解】时,满足,所以.故答案为:1.【点睛】本题考查程序框图,考查条件结构,解题时模拟程序运行即可.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或;(3)【解析】
(1)设,根据圆心与关于直线对称,列出方程组,求得的值,即可求解;(2)由圆的弦长公式,求得,根据斜率分类讨论,求得直线的斜率,即可求解;(3)由直线,得直线过定点,根据时,弦长最短,即可求解.【详解】(1)由题意,圆的圆心,半径为,设,因为圆心与关于直线对称,所以,解得,则,半径,所以圆标准方程为:(2)设点到直线距离为,圆的弦长公式,得,解得,①当斜率不存在时,直线方程为,满足题意②当斜率存在时,设直线方程为,则,解得,所以直线的方程为,综上,直线方程为或(3)由直线,可化为,可得直线过定点,当时,弦长最短,又由,可得,此时最短弦长为.【点睛】本题主要考查了圆的对称圆的求解,以及直线与圆的位置关系的应用,其中解答中熟记直线与圆的弦长公式,合理、准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.18、(1)1;(2)【解析】
(1)将化简可得,再由平移变换可得,由在区间内的最大值为,可得的值;(2)解方程,可得所求相交点距离的最小值.【详解】解:(1)所以,,∴当时,即时,函数取得最大值,∴.(2)根据题意,令,,∴或,.解得或,.因为,当时取等号,∴相邻交点间距离的最小值是.【点睛】本题主要考查三角函数的平移变化及三角恒等变换与三角函数的性质,属于中档题.19、(1)(2)【解析】试题分析:(1)由,得,利用正弦定理统一到角上易得(2)根据题意,得,由余弦定理,得,结合均值不等式可得,所以的最大值为4,又,从而得到周长的取值范围.试题解析:(1)由,得.由正弦定理,得,即.在中,由,得.又,所以.(2)根据题意,得.由余弦定理,得,即,整理得,当且仅当时,取等号,所以的最大值为4.又,所以,所以.所以的周长的取值范围为.20、(1),(2)【解析】
(1)首先根据周期为,得到,再根据图象的平移变换即可得到的解析式.(2)根据得到,根据余弦定理得到,根据基本不等式即可得到,再求周长的取值范围即可.【详解】(1)周期,,.将的图象向右平移个单位长度,再向上平移个单位长度得到.所以.(2),.因为,所以,..因为,所以.所以,即,.所以.【点睛】本题第一问考查三角函数的周期和平移变换,第二问考查了余弦定理,同时还考查了基本不等式,属于中档题.21、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)由由正弦定理得,进而得到,求得,即可求解;(Ⅱ)由(Ⅰ)和正弦定理,求得,再由余弦定理得,利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 结对创先协议书
- 留学委托协议书
- 电车保价协议书
- 男士入赘协议书
- 签约养护协议书
- 签订退房协议书
- 菲俄派遣协议书
- 意难忘王母撕掉协议书
- 电脑合伙协议书
- 环境影响协议书
- 智能教育技术驱动的个性化学习路径优化研究
- 基层治理现代化视角下“枫桥经验”的实践路径与创新研究
- 通信光缆租用协议合同书
- 2024-2025部编版小学道德与法治一年级下册期末考试卷及答案(三套)
- 医疗救助资金动态调整机制-洞察阐释
- 篮球培训报名合同协议
- 自考00061国家税收历年真题及答案
- 公共组织绩效评估-形考任务一(占10%)-国开(ZJ)-参考资料
- 冠状动脉介入诊断治疗
- 帝国的兴衰:修昔底德战争史学习通超星期末考试答案章节答案2024年
- 16J914-1 公用建筑卫生间
评论
0/150
提交评论