2023年福建省清流第一中学数学高一第二学期期末联考试题含解析_第1页
2023年福建省清流第一中学数学高一第二学期期末联考试题含解析_第2页
2023年福建省清流第一中学数学高一第二学期期末联考试题含解析_第3页
2023年福建省清流第一中学数学高一第二学期期末联考试题含解析_第4页
2023年福建省清流第一中学数学高一第二学期期末联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在三棱锥中,已知所有棱长均为,是的中点,则异面直线与所成角的余弦值为()A. B. C. D.2.若三棱锥的四个面都为直角三角形,平面,,,则三棱锥中最长的棱长为()A. B. C. D.3.在平面直角坐标系中,圆:,圆:,点,动点,分别在圆和圆上,且,为线段的中点,则的最小值为A.1 B.2 C.3 D.44.经统计某射击运动员随机命中的概率可视为,为估计该运动员射击4次恰好命中3次的概率,现采用随机模拟的方法,先由计算机产生0到9之间取整数的随机数,用0,1,2没有击中,用3,4,5,6,7,8,9表示击中,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7525,0293,7140,9857,0347,4373,8638,7815,1417,55500371,6233,2616,8045,6011,3661,9597,7424,7610,4281根据以上数据,则可估计该运动员射击4次恰好命中3次的概率为()A. B. C. D.5.已知集合,,则A. B. C. D.6.在空间中,可以确定一个平面的条件是()A.一条直线B.不共线的三个点C.任意的三个点D.两条直线7.已知平面向量,,若,则实数()A.-2 B.-1 C. D.28.某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,则恰好抽到2幅不同种类的概率为()A. B. C. D.9.已知函数的值域为,且图象在同一周期内过两点,则的值分别为()A. B.C. D.10.下列结论正确的是()A.空间中不同三点确定一个平面B.空间中两两相交的三条直线确定一个平面C.一条直线和一个点能确定一个平面D.梯形一定是平面图形二、填空题:本大题共6小题,每小题5分,共30分。11.已知不等式x2-x-a>0的解集为x|x>3或12.在正方体中,是棱的中点,则异面直线与所成角的余弦值为__________.13.用列举法表示集合__________.14.若数列是等差数列,则数列也为等差数列,类比上述性质,相应地,若正项数列是等比数列,则数列_________也是等比数列.15.如图,在边长为的菱形中,,为中点,则______.16.函数在的值域是______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知中,角的对边分别为.(1)若依次成等差数列,且公差为2,求的值;(2)若的外接圆面积为,求周长的最大值.18.高二数学期中测试中,为了了解学生的考试情况,从中抽取了个学生的成绩(满分为100分)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在[50,60),[90,100]的数据).(1)求样本容量和频率分布直方图中的值;(2)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取3名参加志愿者活动,所抽取的3名同学中至少有一名成绩在[90,100]内的概率..19.已知等差数列满足,.(1)求的通项公式;(2)设等比数列满足.若,求的值.20.已知圆.(1)求圆的半径和圆心坐标;(2)斜率为的直线与圆相交于、两点,求面积最大时直线的方程.21.已知直线的方程为,其中.(1)求证:直线恒过定点;(2)当变化时,求点到直线的距离的最大值;(3)若直线分别与轴、轴的负半轴交于两点,求面积的最小值及此时直线的方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

取的中点,连接、,于是得到异面直线与所成的角为,然后计算出的三条边长,并利用余弦定理计算出,即可得出答案.【详解】如下图所示,取的中点,连接、,由于、分别为、的中点,则,且,所以,异面直线与所成的角为或其补角,三棱锥是边长为的正四面体,则、均是边长为的等边三角形,为的中点,则,且,同理可得,在中,由余弦定理得,因此,异面直线与所成角的余弦值为,故选A.【点睛】本题考查异面直线所成角的计算,利用平移法求异面直线所成角的基本步骤如下:(1)一作:平移直线,找出异面直线所成的角;(2)二证:对异面直线所成的角进行说明;(3)三计算:选择合适的三角形,并计算出三角形的边长,利用余弦定理计算所求的角.2、B【解析】

根据题意,画出满足题意的三棱锥,求解棱长即可.【详解】因为平面,故,且,则为直角三角形,由以及勾股定理得:;同理,因为则为直角三角形,由,以及勾股定理得:;在保证和均为直角三角形的情况下,①若,则在中,由勾股定理得:,此时在中,由,及,不满足勾股定理故当时,无法保证为直角三角形.不满足题意.②若,则,又因为面ABC,面ABC,则,故面PAB,又面PAB,故,则此时可以保证也为直角三角形.满足题意.③若,在直角三角形BCA中,斜边AB=2,小于直角边AC=,显然不成立.综上所述:当且仅当时,可以保证四棱锥的四个面均为直角三角形,故作图如下:由已知和勾股定理可得:,显然,最长的棱为.故选:B.【点睛】本题表面考查几何体的性质,以及棱长的计算,涉及线面垂直问题,需灵活应用.3、A【解析】

由得,根据向量的运算和两点间的距离公式,求得点的轨迹方程,再利用点与圆的位置关系,即可求解的最小值,得到答案.【详解】设,,,由得,即,由题意可知,MN为Rt△AMB斜边上的中线,所以,则又由,则,可得,化简得,∴点的轨迹是以为圆心、半径等于的圆C3,∵M在圆C3内,∴MN的最小值即是半径减去M到圆心的距离,即,故选A.【点睛】本题主要考查了圆的方程及性质的应用,以及点圆的最值问题,其中解答中根据圆的性质,求得点的轨迹方程,再利用点与圆的位置关系求解是解答的关键,着重考查了推理与运算能力,属于中档试题.4、A【解析】

根据20组随机数可知该运动员射击4次恰好命中3次的随机数共8组,据此可求出对应的概率.【详解】由题意,该运动员射击4次恰好命中3次的随机数为:7525,0347,7815,5550,6233,8045,3661,7424,共8组,则该运动员射击4次恰好命中3次的概率为.故答案为A.【点睛】本题考查了利用随机模拟数表法求概率,考查了学生对基础知识的掌握.5、C【解析】分析:由题意先解出集合A,进而得到结果。详解:由集合A得,所以故答案选C.点睛:本题主要考查交集的运算,属于基础题。6、B【解析】试题分析:根据平面的基本性质及推论,即确定平面的几何条件,即可知道答案.解:对于A.过一条直线可以有无数个平面,故错;对于C.过共线的三个点可以有无数个平面,故错;对于D.过异面的两条直线不能确定平面,故错;由平面的基本性质及推论知B正确.故选B.考点:平面的基本性质及推论.7、A【解析】

由题意,则,再由数量积的坐标表示公式即可得到关于的方程,解出它的值【详解】由,,则,即解得:故选:A【点睛】本题考查数量积判断两个平面向量的垂直关系,向量的数量积坐标表示,属于基础题.8、B【解析】

算出基本事件的总数和随机事件中基本事件的个数,利用古典概型的概率的计算公式可求概率.【详解】设为“恰好抽到2幅不同种类”某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,基本事件总数,恰好抽到2幅不同种类包含的基本事件个数,则恰好抽到2幅不同种类的概率为.故选B.【点睛】计算出所有的基本事件的总数及随机事件中含有的基本事件的个数,利用古典概型的概率计算即可.计数时应该利用排列组合的方法.9、C【解析】

根据值域先求,再代入数据得到最大值和最小值对应相差得到答案.【详解】函数的值域为即,图象在同一周期内过两点故答案选C【点睛】本题考查了三角函数的最大值最小值,周期,意在考查学生对于三角函数公式和性质的灵活运用和计算能力.10、D【解析】空间中不共线三点确定一个平面,空间中两两相交的三条直线确定一个或三个平面,一条直线和一个直线外一点能确定一个平面,梯形有两对边相互平行,所以梯形一定是平面图形,因此选D.二、填空题:本大题共6小题,每小题5分,共30分。11、6【解析】

由题意可知-2,3为方程x2【详解】由题意可知-2,3为方程x2-x-a=0的两根,则-2×3=-a,即故答案为:6【点睛】本题主要考查一元二次不等式的解,意在考查学生对该知识的理解掌握水平,属于基础题.12、【解析】

假设正方体棱长,根据//,得到异面直线与所成角,计算,可得结果.【详解】假设正方体棱长为1,因为//,所以异面直线与所成角即与所成角则角为如图,所以故答案为:【点睛】本题考查异面直线所成的角,属基础题.13、【解析】

先将的表示形式求解出来,然后根据范围求出的可取值.【详解】因为,所以,又因为,所以,此时或,则可得集合:.【点睛】本题考查根据三角函数值求解给定区间中变量的值,难度较易.14、【解析】

利用类比推理分析,若数列是各项均为正数的等比数列,则当时,数列也是等比数列.【详解】由数列是等差数列,则当时,数列也是等差数列.类比上述性质,若数列是各项均为正数的等比数列,则当时,数列也是等比数列.故答案为:【点睛】类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).15、【解析】

选取为基底,根据向量的加法减法运算,利用数量积公式计算即可.【详解】因为,,,又,.【点睛】本题主要考查了向量的加法减法运算,向量的数量积,属于中档题.16、【解析】

利用,即可得出.【详解】解:由已知,,又

故答案为:.【点睛】本题考查了反三角函数的求值、单调性,考查了推理能力与计算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)由成等差数列,且公差为,可得,利用余弦定理可构造关于的方程,解方程求得结果;(2)设,利用外接圆面积为,求得外接圆的半径.根据正弦定理,利用表示出三边,将周长表示为关于的函数,利用三角函数的值域求解方法求得最大值.【详解】(1)依次成等差数列,且公差为,,由余弦定理得:整理得:,解得:或又,则(2)设,外接圆的半径为,则,解得:由正弦定理可得:可得:,,的周长又当,即:时,取得最大值【点睛】本题考查了正弦定理、余弦定理解三角形、三角形周长最值的求解.求解周长的最值的关键是能够将周长构造为关于角的函数,从而利用三角函数的知识来进行求解.考查了推理能力与计算能力,属于中档题.18、(1)40,0.025,0.005(2)【解析】试题分析:(Ⅰ)由样本容量和频数频率的关系易得答案;(Ⅱ)由题意可知,分数在[80,100)内的学生有6人,分数在[90,100]内的学生有2人,结合古典概型概率公式和对立事件概率公式可求得至少有一名成绩在[90,100]内的概率试题解析:(1)由题意可知,样本容量,,.……………6分(2)由题意,分数在内的有4人,分数在内的有2人,成绩是分以上(含分)的学生共6人.从而抽取的名同学中得分在的学生人数的所有可能的取值为.,所以所求概率为考点:频率分布直方图;茎叶图19、(1);(2)63【解析】

(1)求出公差和首项,可得通项公式;(2)由得公比,再得,结合通项公式求得.【详解】(1)由题意等差数列的公差,,,∴;(2)由(1),∴,,∴,.【点睛】本题考查等差数列与等比数列的通项公式,掌握基本量法是解题基础.20、(1)圆的圆心坐标为,半径为;(2)或.【解析】

(1)将圆的方程化为标准方程,可得出圆的圆心坐标和半径;(2)设直线的方程为,即,设圆心到直线的距离,计算出直线截圆的弦长,利用基本不等式可得出的最大值以及等号成立时对应的的值,利用点的到直线的距离可解出实数的值.【详解】(1)将圆的方程化为标准方程得,因此,圆的圆心坐标为,半径为;(2)设直线的方程为,即,设圆心到直线的距离,则,且,的面积为,当且仅当时等号成立,由点到直线的距离公式得,解得或.因此,直线的方程为或.【点睛】本题考查圆的一般方程与标准方程之间的互化,以及直线截圆所形成的三角形的面积,解题时要充分利用几何法将直线截圆所得弦长表示出来,在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论