![贵州省遵义市第二教育集团2023年数学高一第二学期期末经典试题含解析_第1页](http://file4.renrendoc.com/view/913d36fc34b4f5e9e04d80b8d155d197/913d36fc34b4f5e9e04d80b8d155d1971.gif)
![贵州省遵义市第二教育集团2023年数学高一第二学期期末经典试题含解析_第2页](http://file4.renrendoc.com/view/913d36fc34b4f5e9e04d80b8d155d197/913d36fc34b4f5e9e04d80b8d155d1972.gif)
![贵州省遵义市第二教育集团2023年数学高一第二学期期末经典试题含解析_第3页](http://file4.renrendoc.com/view/913d36fc34b4f5e9e04d80b8d155d197/913d36fc34b4f5e9e04d80b8d155d1973.gif)
![贵州省遵义市第二教育集团2023年数学高一第二学期期末经典试题含解析_第4页](http://file4.renrendoc.com/view/913d36fc34b4f5e9e04d80b8d155d197/913d36fc34b4f5e9e04d80b8d155d1974.gif)
![贵州省遵义市第二教育集团2023年数学高一第二学期期末经典试题含解析_第5页](http://file4.renrendoc.com/view/913d36fc34b4f5e9e04d80b8d155d197/913d36fc34b4f5e9e04d80b8d155d1975.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角的终边经过点,则()A. B. C. D.2.圆与直线的位置关系为()A.相离 B.相切C.相交 D.以上都有可能3.函数的定义域为()A. B. C. D.4.若两等差数列,前项和分別为,,满足,则的值为().A. B. C. D.5.将函数的图象向右平移个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的倍(纵坐标不变),则所得到的图象的函数解析式为()A. B.C. D.6.在中,角,,所对的边分别为,,,若,,,则()A. B. C. D.7.在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B. C. D.8.已知=(2,3),=(3,t),=1,则=A.-3 B.-2C.2 D.39.设等差数列的前n项和为,若,则()A.3 B.4 C.5 D.610.已知为锐角,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.直线与圆的位置关系是______.12.若关于的不等式的解集为,则__________13.已知,若对任意,均有,则的最小值为______;14.己知数列满足就:,,若,写出所有可能的取值为______.15.己知函数,,则的值为______.16.已知点及其关于原点的对称点均在不等式表示的平面区域内,则实数的取值范围是____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知小岛A的周围38海里内有暗礁,船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后在C处测得小岛A在船的南偏东45°,如果此船不改变航向,继续向南航行,问有无触礁的危险?18.近期,某公交公司分别推出支付宝和徽信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x表示活动推出的天数,y表示每天使用扫码支付的人次(单位:十人次),统计数据如表l所示:表1根据以上数据,绘制了如右图所示的散点图.(1)根据散点图判断,在推广期内,y=a+bx与(2)根据(1)的判断结果及表1中的数据,求y关于x的回归方程,并预测活动推出第8天使用扫码支付的人次;参考数据:其中υ参考公式:对于一组数据u1,υ1,19.已知向量,,.(1)求函数的最小正周期及单调递减区间;(2)记的内角的对边分别为.若,,求的值.20.已知圆与轴交于两点,且(为圆心),过点且斜率为的直线与圆相交于两点(Ⅰ)求实数的值;(Ⅱ)若,求的取值范围;(Ⅲ)若向量与向量共线(为坐标原点),求的值21.已知公差大于零的等差数列满足:.(1)求数列通项公式;(2)记,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
首先根据题意求出,再根据正弦函数的定义即可求出的值.【详解】,.故选:C【点睛】本题主要考查正弦函数的定义,属于简单题.2、C【解析】
由直线方程可确定其恒过的定点,由点与圆的位置关系的判定方法知该定点在圆内,则可知直线与圆相交.【详解】由得:直线恒过点在圆内部直线与圆相交故选:【点睛】本题考查直线与圆位置关系的判定,涉及到直线恒过定点的求解、点与圆的位置关系的判定,属于常考题型.3、C【解析】要使函数有意义,需使,即,所以故选C4、B【解析】解:因为两等差数列、前项和分别为、,满足,故,选B5、A【解析】
由题意利用函数的图象变换法则,即可得出结论。【详解】将函数的图象向右平移个的单位长度,可得的图象,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为,故选.【点睛】本题主要考查函数的图象变换法则,注意对的影响。6、C【解析】
在中,利用正弦定理求出即可.【详解】在中,角,,所对的边分别为,,,已知:,,,利用正弦定理:,解得:.故选C.【点睛】本题考查了正弦定理的应用及相关的运算问题,属于基础题.7、C【解析】
利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.【详解】在正方体中,,所以异面直线与所成角为,设正方体边长为,则由为棱的中点,可得,所以,则.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.8、C【解析】
根据向量三角形法则求出t,再求出向量的数量积.【详解】由,,得,则,.故选C.【点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.9、C【解析】
由又,可得公差,从而可得结果.【详解】是等差数列又,∴公差,,故选C.【点睛】本题主要考查等差数列的通项公式与求和公式的应用,意在考查灵活应用所学知识解答问题的能力,属于中档题.10、A【解析】
先将展开并化简,再根据二倍角公式,计算可得。【详解】由题得,,整理得,又为锐角,则,,解得.故选:A【点睛】本题考查两角和差公式以及二倍角公式,是基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、相交【解析】
由直线系方程可得直线过定点,进而可得点在圆内部,即可得到位置关系.【详解】化直线方程为,令,解得,所以直线过定点,又圆的圆心坐标为,半径,而,所以点在圆内部,故直线与圆的位置关系是相交.故答案为:相交.【点睛】本题考查直线与圆位置关系的判断,考查直线系方程的应用,属于基础题.12、1【解析】
根据二次不等式和二次方程的关系,得到是方程的两根,由根与系数的关系得到的值.【详解】因为关于的不等式的解集为所以是方程的两根,,由根与系数的关系得,解得【点睛】本题考查一元二次不等式和一元二次方程之间的关系,根与系数之间的关系,属于简单题.13、【解析】
根据对任意,均有,分析得到,再根据正弦型函数的最值公式求解出的最小值.【详解】因为对任意,均有,所以,所以,所以,所以.故答案为:.【点睛】本题考查正弦型函数的应用,难度一般.正弦型函数的最值一定是在对称轴的位置取到,因此正弦型函数取最大值与最小值时对应的自变量的差的绝对值最小为,此时最大值与最小值对应的对称轴相邻.14、【解析】(1)若为偶数,则为偶,故①当仍为偶数时,故②当为奇数时,故得m=4。(2)若为奇数,则为偶数,故必为偶数,所以=1可得m=515、1【解析】
将代入函数计算得到答案.【详解】函数故答案为:1【点睛】本题考查了三角函数的计算,属于简单题.16、【解析】
根据题意,设与关于原点的对称,分析可得的坐标,由二元一次不等式的几何意义可得,解可得的取值范围,即可得答案.【详解】根据题意,设与关于原点的对称,则的坐标为,若、均在不等式表示的平面区域内,则有,解可得:,即的取值范围为,;故答案为,.【点睛】本题考查二元一次不等式表示平面区域的问题,涉及不等式的解法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、继续向南航行无触礁的危险.【解析】试题分析:要判断船有无触礁的危险,只要判断A到BC的直线距离是否大于38海里就可以判断.解:在三角形ABC中:BC=30,∠B=30°,∠ACB=180°-45°=135°,故∠A=15°由正弦定理得:故于是A到BC的直线距离是Acsin45°==,大于38海里.答:继续向南航行无触礁的危险.考点:本题主要考查正弦定理的应用点评:分析几何图形的特征,运用三角形内角和定理确定角的关系,有助于应用正弦定理.18、(1)y=c⋅dx【解析】
(1)根据散点图判断,y=c⋅dx适宜;(2)y=c⋅dx,两边同时取常用对数得:【详解】(1)根据散点图判断,y=c⋅dx适宜作为扫码支付的人数y关于活动推出天数(2)∵y=c⋅dx,两边同时取常用对数得:1gy=1g(c⋅d设1gy=v,∴v=1gc+1gd⋅x∵x=4,v∴lgd=把样本中心点(4,1.54)代入v=1gc+1gd⋅x,得:∴v=0.54+0.25x,∴y关于x的回归方程式:y=把x=8代入上式,y=3.47×活动推出第8天使用扫码支付的人次为3470;【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与Y之间的关系,这条直线过样本中心点.线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的,线性回归方程得到的预测值是预测变量的估计值,不是准确值.19、(1)最小正周期为,单调递减区间为;(2)或【解析】
(1)由向量的数量积的运算公式和三角恒等变换的公式化简可得,再结合三角函数的性质,即可求解.(2)由(1),根据,解得,利用正弦定理,求得,再利用余弦定理列出方程,即可求解.【详解】(1)由题意,向量,,所以,因为,所以函数的最小正周期为,令,解得,所以函数的单调递减区间为.(2)由(1)函数的解析式为,可得,解得,又由,根据正弦定理,可得,因为,所以,所以为锐角,所以,由余弦定理可得,可得,即,解得或.【点睛】本题主要考查了向量的数量积的运算,三角恒等变换的应用,以及正弦定理和余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.20、(Ⅰ)(Ⅱ)(Ⅲ)【解析】
(Ⅰ)由圆的方程得到圆心坐标和;根据、为等腰直角三角形可知,从而得到,解方程求得结果;(Ⅱ)设直线方程为;利用点到直线距离公式求得圆心到直线距离;由垂径定理可得到,利用可构造不等式求得结果;(Ⅲ)直线方程与圆方程联立,根据直线与圆有两个交点可根据得到的取值范围;设,,利用韦达定理求得,并利用求得,即可得到;利用向量共线定理可得到关于的方程,解方程求得满足取值范围的结果.【详解】(Ⅰ)由圆得:圆心,由题意知,为等腰直角三角形设的中点为,则也为等腰直角三角形,解得:(Ⅱ)设直线方程为:则圆心到直线的距离:由,,可得:,解得:的取值范围为:(Ⅲ)联立直线与圆的方程:消去变量得:设,,由韦达定理得:且,整理得:解得:或,与向量共线,,解得:或不满足【点睛】本题考查直线与圆位置关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 百镇千村示范卫生机构创建课件
- DB6103T 77-2025酿酒高粱宽窄行栽培技术规范
- 船运安全的防范措施与管理建议分析
- 三人合资餐饮企业合同模板
- 专利许可使用与转让协议合同
- 上海住宅租赁合同范本
- 人事代理人员劳动合同书
- 个人寿险代理合同书样本
- 临时兼职教师劳动合同范文
- 临时性劳动合同模板
- 电捕焦油器火灾爆炸事故分析
- 质量问题分析及措施报告
- 汽修厂安全风险分级管控清单
- 现代通信原理与技术(第五版)PPT全套完整教学课件
- 病例展示(皮肤科)
- GB/T 39750-2021光伏发电系统直流电弧保护技术要求
- DB31T 685-2019 养老机构设施与服务要求
- 燕子山风电场项目安全预评价报告
- 高一英语课本必修1各单元重点短语
- 完整版金属学与热处理课件
- T∕CSTM 00640-2022 烤炉用耐高温粉末涂料
评论
0/150
提交评论