上海市浦东新区川沙中学2022-2023学年数学高一下期末检测试题含解析_第1页
上海市浦东新区川沙中学2022-2023学年数学高一下期末检测试题含解析_第2页
上海市浦东新区川沙中学2022-2023学年数学高一下期末检测试题含解析_第3页
上海市浦东新区川沙中学2022-2023学年数学高一下期末检测试题含解析_第4页
上海市浦东新区川沙中学2022-2023学年数学高一下期末检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若cosα=13A.13 B.-13 C.2.某个算法程序框图如图所示,如果最后输出的的值是25,那么图中空白处应填的是()A. B. C. D.3.已知的内角、、的对边分别为、、,且,若,则的外接圆面积为()A. B. C. D.4.用数学归纳法证明这一不等式时,应注意必须为()A. B., C., D.,5.已知,,直线,若直线过线段的中点,则()A.-5 B.5 C.-4 D.46.在中,点满足,则()A. B.C. D.7.一只小狗在图所示的方砖上走来走去,最终停在涂色方砖的概率为()A. B. C. D.8.在中,,,,则B等于()A.或 B. C. D.以上答案都不对9.函数的部分图像如图所示,则当时,的值域是()A. B.C. D.10.在中,角A,B,C的对边分别为a,b,c.已知,,,则B为()A. B.或 C. D.或二、填空题:本大题共6小题,每小题5分,共30分。11.在正方体的体对角线与棱所在直线的位置关系是______.12.若点与关于直线对称,则的倾斜角为_______13.函数,的值域为________14.设,则等于________.15.若,且,则的最小值为_______.16.函数的初相是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在一次人才招聘会上,有、两家公司分别开出了他们的工资标准:公司允诺第一个月工资为8000元,以后每年月工资比上一年月工资增加500元;公司允诺第一年月工资也为8000元,以后每年月工资在上一年的月工资基础上递增,设某人年初被、两家公司同时录取,试问:(1)若该人分别在公司或公司连续工作年,则他在第年的月工资分别是多少;(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其他因素),该人应该选择哪家公司,为什么?18.对于三个实数、、,若成立,则称、具有“性质”.(1)试问:①,0是否具有“性质2”;②(),0是否具有“性质4”;(2)若存在及,使得成立,且,1具有“性质2”,求实数的取值范围;(3)设,,,为2019个互不相同的实数,点()均不在函数的图象上,是否存在,且,使得、具有“性质2018”,请说明理由.19.如图,在四棱锥中,底面是正方形,侧面⊥底面,若分别为的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面⊥平面.20.小明同学在寒假社会实践活动中,对白天平均气温与某家奶茶店的品牌饮料销量之间的关系进行了分析研究,他分别记录了1月11日至1月15日的白天气温()与该奶茶店的品牌饮料销量(杯),得到如表数据:日期1月11号1月12号1月13号1月14号1月15号平均气温()91012118销量(杯)2325302621(1)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;(2)请根据所给五组数据,求出关于的线性回归方程式;(3)根据(2)所得的线性回归方程,若天气预报1月16号的白天平均气温为,请预测该奶茶店这种饮料的销量.(参考公式:,)21.已知函数(其中).(1)当时,求不等式的解集;(2)若关于的不等式恒成立,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

利用二倍角余弦公式cos2α=2【详解】由二倍角余弦公式可得cos2α=2【点睛】本题考查二倍角余弦公式的应用,着重考查学生对二倍角公式熟记和掌握情况,属于基础题.2、B【解析】

分别依次写出每次循环所得答案,再与输出结果比较,得到答案.【详解】由程序框图可知,第一次循环后,,,;第二次循环后,,,;第三次循环后,,,;第四次循环后,,,;第五次循环后,,,此时,则图中空白处应填的是【点睛】本题主要考查循环结构由输出结果计算判断条件,难度不大.3、D【解析】

先化简得,再利用正弦定理求出外接圆的半径,即得的外接圆面积.【详解】由题得,所以,所以,所以,所以.由正弦定理得,所以的外接圆面积为.故选D【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.4、D【解析】

根据题意验证,,时,不等式不成立,当时,不等式成立,即可得出答案.【详解】解:当,,时,显然不等式不成立,当时,不等式成立,故用数学归纳法证明这一不等式时,应注意必须为,故选:.【点睛】本题考查数学归纳法的应用,属于基础题.5、B【解析】

根据题意先求出线段的中点,然后代入直线方程求出的值.【详解】因为,,所以线段的中点为,因为直线过线段的中点,所以,解得.故选【点睛】本题考查了直线过某一点求解参量的问题,较为简单.6、D【解析】

因为,所以,即;故选D.7、C【解析】

方砖上共分为九个全等的正方形,涂色方砖为其中的两块,由几何概型的概率公式可计算出所求事件的概率.【详解】由图形可知,方砖上共分为九个全等的正方形,涂色方砖为其中的两块,由几何概型的概率公式可知,小狗最终停在涂色方砖的概率为,故选:C.【点睛】本题考查利用几何概型概率公式计算事件的概率,解题时要理解事件的基本类型,正确选择古典概型和几何概型概率公式进行计算,考查计算能力,属于基础题.8、C【解析】试题分析:由正弦定理得,得,结合得,故选C.考点:正弦定理.9、D【解析】如图,,得,则,又当时,,得,又,得,所以,当时,,所以值域为,故选D.点睛:本题考查由三角函数的图象求解析式.本题中,先利用周期求的值,然后利用特殊点(一般从五点内取)求的值,最后根据题中的特殊点求的值.值域的求解利用整体思想.10、C【解析】

根据正弦定理得到,再根据知,得到答案.【详解】根据正弦定理:,即,根据知,故.故选:.【点睛】本题考查了根据正弦定理求角度,多解是容易发生的错误.二、填空题:本大题共6小题,每小题5分,共30分。11、异面直线【解析】

根据异面直线的定义,作出图形,即可求解,得到答案.【详解】如图所示,与不在同一平面内,也不相交,所以体对角线与棱是异面直线.【点睛】本题主要考查了异面直线的概念及其判定,其中熟记异面直线的定义是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.12、【解析】

根据两点关于直线对称,可知与垂直,利用斜率乘积为可求得,根据直线倾斜角与斜率的关系可求得倾斜角.【详解】由题意知:,即:又本题正确结果:【点睛】本题考查直线倾斜角的求解,关键是能够根据两点关于直线对称的性质求得所求直线的斜率,再根据斜率与倾斜角的关系求得结果.13、【解析】

先求的值域,再求的值域即可.【详解】因为,故,故.故答案为:【点睛】本题主要考查了余弦函数的值域与反三角函数的值域等,属于基础题型.14、【解析】

首先根据题中求出的周期,然后利用周期性即可求出答案.【详解】由题知,有,故的周期为,故,又因为,有.故答案为:.【点睛】本题考查了三角函数的周期性,属于基础题.15、【解析】

将变换为,展开利用均值不等式得到答案.【详解】若,且,则时等号成立.故答案为【点睛】本题考查了均值不等式,“1”的代换是解题的关键.16、【解析】

根据函数的解析式即可求出函数的初相.【详解】,初相为.故答案为:【点睛】本题主要考查的物理意义,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)公司:;公司:;(2)公司十年月工资总和为,公司十年月工资总和为,选公司;【解析】

(1)易得在两家公司每年的工资分别成等差和等比数列再求解即可.(2)根据(1)中的通项公式求解前10年的工资和比较大小即可.【详解】(1)易得在公司的工资成公差为500,首项为8000的等差数列,故在公司第年的月工资为.在公司的工资成公比为,首项为8000的等比数列.故在公司第年的月工资为.(2)由(1)得,在公司十年月工资总和在公司十年月工资总和.因为.故选公司.【点睛】本题主要考查了等差等比数列的实际应用题,需要根据题意找出首项公比公差再求和等.属于基础题型.18、(1)①具有“性质2”,②不具有“性质4”;(2);(3)存在.【解析】

(1)①根据题意需要判断的真假即可②根据题意判断是否成立即可得出结论;(2)根据具有性质2可求出的范围,由存在性问题成立转化为,根据函数的性质求最值即可求解.【详解】(1)①因为,成立,所以,故,0具有“性质2”②因为,设,则设,对称轴为,所以函数在上单调递减,当时,,所以当时,不恒成立,即不成立,故(),0不具有“性质4”.(2)因为,1具有“性质2”所以化简得解得或.因为存在及,使得成立,所以存在及使即可.令,则,当时,,所以在上是增函数,所以时,,当时,,故时,因为在上单调递减,在上单调递增,所以,故只需满足即可,解得.(3)假设具有“性质2018”,则,即证明在任意2019个互不相同的实数中,一定存在两个实数,满足:.证明:由,令,由万能公式知,将等分成2018个小区间,则这2019个数必然有两个数落在同一个区间,令其为:,即,也就是说,在,,,这2019个数中,一定有两个数满足,即一定存在两个实数,满足,从而得证.【点睛】本题主要考查了不等式的证明,根据存在性问题求参数的取值范围,三角函数的单调性,万能公式,考查了创新能力,属于难题.19、(1)证明见解析;(2)证明见解析.【解析】

(Ⅰ)利用线面平行的判定定理,只需证明EF∥PA,即可;(Ⅱ)先证明线面垂直,CD⊥平面PAD,再证明面面垂直,平面PAD⊥平面PDC

即可.【详解】(Ⅰ)证明:连结AC,在正方形ABCD中,F为BD中点,正方形对角线互相平分,∴F为AC中点,又E是PC中点,在△CPA中,EF∥PA,且PA⊆平面PAD,EF⊄平面PAD,∴EF∥平面PAD.(Ⅱ)∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊥AD,平面∴CD⊥平面PAD,∵CD⊂平面PDC,∴平面PAD⊥平面PDC【点睛】本题主要考查空间直线与平面平行的判定定理,以及平面与平面垂直的判定定理,要求熟练掌握相关的判定定理.20、(1);(2);(3)19杯.【解析】试题分析:(1)由“选取的组数据恰好是相邻天的数据”为事件,得出基本事件的总数,利用古典概型,即可求解事件的概率;(2)由数据求解,求由公式,求得,即可求得回归直线方程;(3)当,代入回归直线方程,即可作出预测的结论.试题解析:(Ⅰ)设“选取的组数据恰好是相邻天的数据”为事件,所有基本事件(其中,为月份的日期数)有种,事件包括的基本事件有,,,共种.所以.(Ⅱ)由数据,求得,.由公式,求得,,所以关于的线性回归方程为.(Ⅲ

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论