2023年山东省菏泽市单县第五中学数学高一下期末达标检测试题含解析_第1页
2023年山东省菏泽市单县第五中学数学高一下期末达标检测试题含解析_第2页
2023年山东省菏泽市单县第五中学数学高一下期末达标检测试题含解析_第3页
2023年山东省菏泽市单县第五中学数学高一下期末达标检测试题含解析_第4页
2023年山东省菏泽市单县第五中学数学高一下期末达标检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在等差数列{an}中,已知a1=2A.50 B.52 C.54 D.562.已知,则向量与向量的夹角是()A. B. C. D.3.等差数列an的公差d<0,且a12=a212,则数列aA.9 B.10 C.10和11 D.11和124.设向量满足,且,则向量在向量方向上的投影为A.1 B. C. D.5.已知等差数列中,,则()A. B.C. D.6.某校有高一学生人,高二学生人,高三学生人,现教育局督导组欲用分层抽样的方法抽取名学生进行问卷调查,则下列判断正确的是()A.高一学生被抽到的可能性最大 B.高二学生被抽到的可能性最大C.高三学生被抽到的可能性最大 D.每位学生被抽到的可能性相等7.在正方体中,当点在线段(与,不重合)上运动时,总有:①;②平面平面;③平面;④.以上四个推断中正确的是()A.①② B.①④ C.②④ D.③④8.当时,不等式恒成立,则实数m的取值范围是()A. B. C. D.9.设,若不等式恒成立,则实数a的取值范围是()A. B. C. D.10.已知平面平面,直线平面,直线平面,,在下列说法中,①若,则;②若,则;③若,则.正确结论的序号为()A.①②③ B.①② C.①③ D.②③二、填空题:本大题共6小题,每小题5分,共30分。11.在直角梯形.中,,分别为的中点,以为圆心,为半径的圆交于,点在上运动(如图).若,其中,则的最大值是________.12.已知正实数a,b满足2a+b=1,则1a13.设为虚数单位,复数的模为______.14.已知向量(1,2),(x,4),且∥,则_____.15.设是等差数列的前项和,若,,则公差(___).16.在等比数列中,若,则等于__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,的夹角为,且,.(1)求;(2)求.18.己知角的终边经过点.求的值;求的值.19.已知,,,均为锐角,且.(1)求的值;(2)若,求的值.20.如图,四棱锥中,底面为矩形,面,为的中点.(1)证明:平面;(2)设,,三棱锥的体积,求A到平面PBC的距离.21.某校团委会组织某班以小组为单位利用周末时间进行一次社会实践活动,每个小组有5名同学,在活动结束后,学校团委会对该班的所有同学进行了测试,该班的A,B两个小组所有同学得分(百分制)的茎叶图如图所示,其中B组一同学的分数已被污损,但知道B组学生的平均分比A组同学的平均分高一分.(1)若在B组学生中随机挑选1人,求其得分超过86分的概率;(2)现从A、B两组学生中分别随机抽取1名同学,设其分数分别为m、n,求的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

利用等差数列通项公式求得基本量d,根据等差数列性质可得a4【详解】设等差数列an公差为则a2+∴本题正确选项:C【点睛】本题考查等差数列基本量的求解问题,关键是能够根据等差数列通项公式构造方程求得公差,属于基础题.2、C【解析】试题分析:根据已知可得:,所以,所以夹角为,故选择C考点:向量的运算3、C【解析】

利用等差数列性质得到a11=0,再判断S10【详解】等差数列an的公差d<0,且a根据正负关系:S10或S故答案选C【点睛】本题考查了等差数列的性质,Sn的最大值,将Sn的最大值转化为4、D【解析】

先由题中条件,求出向量的数量积,再由向量数量积的几何意义,即可求出投影.【详解】因为,,所以,所以,故向量在向量方向上的投影为.故选D【点睛】本题主要考查平面向量的数量积,熟记平面向量数量积的几何意义即可,属于常考题型.5、C【解析】

,.故选C.6、D【解析】

根据分层抽样是等可能的选出正确答案.【详解】由于分层抽样是等可能的,所以每位学生被抽到的可能性相等,故选D.【点睛】本小题主要考查随机抽样的公平性,考查分层抽样的知识,属于基础题.7、D【解析】

每个结论可以通过是否能证伪排除即可.【详解】①因为,与相交,所以①错.②很明显不对,只有当E在中点时才满足条件.③易得平面平面,而AE平面,所以平面;④因为平面,而AE平面,所以.故选D【点睛】此题考查空间图像位置关系,一般通过特殊位置排除即可,属于较易题目.8、A【解析】

当x>0时,不等式x2﹣mx+9>0恒成立⇔m<(x)min,利用基本不等式可求得(x)min=6,从而可得实数m的取值范围.【详解】当x>0时,不等式x2﹣mx+9>0恒成立⇔当x>0时,不等式m<x恒成立⇔m<(x)min,当x>0时,x26(当且仅当x=3时取“=”),因此(x)min=6,所以m<6,故选A.【点睛】本题考查函数恒成立问题,分离参数m是关键,考查等价转化思想与基本不等式的应用,属于中档题.9、D【解析】

由题意可得恒成立,讨论,,运用基本不等式,可得最值,进而得到所求范围.【详解】恒成立,即为恒成立,当时,可得的最小值,由,当且仅当取得最小值8,即有,则;当时,可得的最大值,由,当且仅当取得最大值,即有,则,综上可得.故选.【点睛】本题主要考查不等式恒成立问题的解法,注意运用参数分离和分类讨论思想,以及基本不等式的应用,意在考查学生的转化思想、分类讨论思想和运算能力.10、D【解析】

由面面垂直的性质和线线的位置关系可判断①;由面面垂直的性质定理可判断②;由线面垂直的性质定理可判断③.【详解】平面平面.直线平面,直线平面,,①若,可得,可能平行,故①错误;②若,由面面垂直的性质定理可得,故②正确;③若,可得,故③正确.故选:D.【点睛】本题考查空间线线和线面、面面的位置关系,主要是平行和垂直的判断和性质,考查推理能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

建立直角坐标系,设,根据,表示出,结合三角函数相关知识即可求得最大值.【详解】建立如图所示的平面直角坐标系:,分别为的中点,,以为圆心,为半径的圆交于,点在上运动,设,,即,,所以,两式相加:,即,要取得最大值,即当时,故答案为:【点睛】此题考查平面向量线性运算,处理平面几何相关问题,涉及三角换元,转化为求解三角函数的最值问题.12、9【解析】

利用“乘1法”和基本不等式即可得出.【详解】解:∵正实数a,b满足2a+b=1,∴1a+12b=(2a+b∴1a+故答案为:9【点睛】本题考查了“乘1法”和基本不等式的应用,属于基础题.13、5【解析】

利用复数代数形式的乘法运算化简,然后代入复数模的公式,即可求得答案.【详解】由题意,复数,则复数的模为.故答案为5【点睛】本题主要考查了复数的乘法运算,以及复数模的计算,其中熟记复数的运算法则,和复数模的公式是解答的关键,着重考查了推理与运算能力,属于基础题.14、.【解析】

根据求得,从而可得,再求得的坐标,利用向量模的公式,即可求解.【详解】由题意,向量,则,解得,所以,则,所以.【点睛】本题主要考查了向量平行关系的应用,以及向量的减法和向量的模的计算,其中解答中熟记向量的平行关系,以及向量的坐标运算是解答的关键,着重考查了推理与运算能力,属于基础题.15、【解析】

根据两个和的关系得到公差条件,解得结果.【详解】由题意可知,,即,又,两式相减得,.【点睛】本题考查等差数列和项的性质,考查基本分析求解能力,属基础题.16、【解析】

由等比数列的性质可得,,代入式子中运算即可.【详解】解:在等比数列中,若故答案为:【点睛】本题考查等比数列的下标和性质的应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)1;(2)【解析】

(1)利用向量数量积的定义求解;(2)先求模长的平方,再进行开方可得.【详解】(1)•=||||cos60°=2×1×=1;(2)|+|2=(+)2=+2•+=4+2×1+1=7.所以|+|=.【点睛】本题主要考查平面向量数量积的定义及向量模长的求解,一般地,求解向量模长时,先把模长平方,化为数量积运算进行求解.18、(1)(2)【解析】

(1)直接利用三角函数的定义的应用求出结果.(2)利用同角三角函数关系式的变换和诱导公式的应用求出结果.【详解】(1)由题意,由角的终边经过点,根据三角函数的定义,可得.由知,则.【点睛】本题主要考查了三角函数关系式的恒等变换,同角三角函数的关系式的变换,诱导公式的应用,主要考察学生的运算能力和转换能力,属于基础题型.19、(1);(2)【解析】

(1)计算表达出,再根据,两边平方求化简即可求得.(2)根据,再利用余弦的差角公式展开后分别计算求解即可.【详解】(1)由题意,得,,,,.(2),,均为锐角,仍为锐角,,,.【点睛】本题主要考查了根据向量的数量积列出关于三角函数的等式,再利用三角函数中的和差角以及凑角求解的方法.属于中档题.20、(1)证明见解析(2)到平面的距离为【解析】

试题分析:(1)连结BD、AC相交于O,连结OE,则PB∥OE,由此能证明PB∥平面ACE.(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出A到平面PBD的距离试题解析:(1)设BD交AC于点O,连结EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB又EO平面AEC,PB平面AEC所以PB∥平面AEC.(2)由,可得.作交于.由题设易知,所以故,又所以到平面的距离为法2:等体积法由,可得.由题设易知,得BC假设到平面的距离为d,又因为PB=所以又因为(或),,所以考点:线面平行的判定及点到面的距离21、(1)(2)【解析】

(1)求出A组学生的平均分可得B组学生的平均分,设被污损的分数为X,列方程得X,从而得到B组学生的分数,其中有3人分数超过86分,由此能求出B组学生中随机挑选1人,其得分超过86分概率.(2)利用列举法写出在A、B两组学生中随机抽取1名同学,其分数组成的所有基本事件(m,n),利用古典概型求出|m﹣n|≥8的概率.【详解】(1)A组学生的平均分为,所以B组学生的平均分为86分设被污损的分数为,则,解得所以B组学生的分数为91、93、83、88、75,其中有3人分数超过86分在B组学生中随机挑选1人,其得分超过86分概率为.(2)A组学生的分数分别是94、80、86、88、77,B组学生的分数为91、93、83、88、75,在A、B两组学生中随机抽取1名同学,其分数组成的基本事件(m,n),有(94,91),(94,93),(94,83),(94,88),(94,75),(80,91),(80,93),(80,83),(80,88),(80,75),(86,91),(86,93),(86,83),(86,88),(86,75

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论