版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则()A.- B. C. D.2.已知中,,则角()A.60°或120° B.30°或90° C.30° D.90°3.若,,,设,,且,则的值为()A.0 B.3 C.15 D.184.在等差数列中,为其前n项和,若,则()A.60 B.75 C.90 D.1055.已知、都是公差不为0的等差数列,且,,则的值为()A.2 B.-1 C.1 D.不存在6.将函数的图象向左平移个长度单位后,所得到的图象关于轴对称,则的最小值是()A. B. C. D.7.已知平面向量=(1,-3),=(4,-2),与垂直,则是()A.2 B.1 C.-2 D.-18.若是等比数列,下列结论中不正确的是()A.一定是等比数列; B.一定是等比数列;C.一定是等比数列; D.一定是等比数列9.已知两条不重合的直线和,两个不重合的平面和,下列四个说法:①若,,,则;②若,,则;③若,,,,则;④若,,,,则.其中所有正确的序号为()A.②④ B.③④ C.④ D.①③10.在中,若,,,则等于()A.3 B.4 C.5 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.若,则________.12.设,则等于________.13.的内角的对边分别为.若,则的面积为__________.14.函数的单调增区间为_________.15.某银行一年期定期储蓄年利率为2.25%,如果存款到期不取出继续留存于银行,银行自动将本金及80%的利息(利息须交纳20%利息税,由银行代交)自动转存一年期定期储蓄,某人以一年期定期储蓄存入银行20万元,则5年后,这笔钱款交纳利息税后的本利和为________元.(精确到1元)16.如果是奇函数,则=.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角的对边分别为,且.(1)求角A的大小;(2)若,求的面积.18.已知0<α<π,cos(1)求tanα+(2)求sin2α+119.已知中,角的对边分别为.(1)若依次成等差数列,且公差为2,求的值;(2)若的外接圆面积为,求周长的最大值.20.设数列是公差为2的等差数列,数列满足,,.(1)求数列、的通项公式;(2)求数列的前项和;(3)设数列,试问是否存在正整数,,使,,成等差数列?若存在,求出,的值;若不存在,请说明理由.21.如图,四棱锥中,是正三角形,四边形ABCD是矩形,且平面平面.(1)若点E是PC的中点,求证:平面BDE;(2)若点F在线段PA上,且,当三棱锥的体积为时,求实数的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
首先观察两个角之间的关系:,因此两边同时取余弦值即可.【详解】因为所以所以,选B.【点睛】本题主要考查了三角函的诱导公式.解决此题的关键在于拼凑出,再利用诱导公式(奇变偶不变、符号看象限)即可.2、B【解析】
由正弦定理求得,再求.【详解】由正弦定理,∴,或,时,,时,.故选:B.【点睛】本题考查正弦定理,在用正弦定理解三角形时,可能会出现两解,一定要注意.3、B【解析】
首先分别求出向量,然后再用两向量平行的坐标表示,最后求值.【详解】,,当时,,解得.故选B.【点睛】本题考查了向量平行的坐标表示,属于基础题型.4、B【解析】
由条件,利用等差数列下标和性质可得,进而得到结果.【详解】,即,而,故选B.【点睛】本题考查等差数列的性质,考查运算能力与推理能力,属于中档题.5、C【解析】
首先根据求出数列、公差之间的关系,再代入即可。【详解】因为和都是公差不为零的等差数列,所以设故,可得又因为和代入则.故选:C.【点睛】本题主要考查了极限的问题以及等差数列的通项属于基础题。6、B【解析】
试题分析:由题意得,,令,可得函数的图象对称轴方程为,取是轴右侧且距离轴最近的对称轴,因为将函数的图象向左平移个长度单位后得到的图象关于轴对称,的最小值为,故选B.考点:两角和与差的正弦函数及三角函数的图象与性质.【方法点晴】本题主要考查了两角和与差的正弦函数及三角函数的图象与性质,将三角函数图象向左平移个单位,所得图象关于轴对称,求的最小值,着重考查了三角函数的化简、三角函数图象的对称性等知识的灵活应用,本题的解答中利用辅助角公式,化简得到函数,可取出函数的对称轴,确定距离最近的点,即可得到结论.7、D【解析】
试题分析:,由与垂直可知考点:向量垂直与坐标运算8、C【解析】
判断等比数列,可根据为常数来判断.【详解】设等比数列的公比为,则对A:为常数,故一定是等比数列;对B:为常数,故一定是等比数列;对C:当时,,此时为每项均为0的常数列;对D:为常数,故一定是等比数列.故选:C.【点睛】本题主要考查等比数列的判定,若数列的后项除以前一项为常数,则该数列为等比数列.本题选项C容易忽略时这种情况.9、C【解析】
根据线面平行,面面平行,线面垂直,面面垂直的性质定理,判定定理等有关结论,逐项判断出各项的真假,即可求出.【详解】对①,若,,,则或和相交,所以①错误;对②,若,,则或,所以②错误;对③,根据面面平行的判定定理可知,只有,,,,且和相交,则,所以③错误;对④,根据面面垂直的性质定理可知,④正确.故选:C.【点睛】本题主要考查有关线面平行,面面平行,线面垂直,面面垂直的命题的判断,意在考查线面平行,面面平行,线面垂直,面面垂直的性质定理,判定定理等有关结论的理解和应用,属于基础题.10、D【解析】
直接运用正弦定理求解即可.【详解】由正弦定理可知中:,故本题选D.【点睛】本题考查了正弦定理的应用,考查了数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
观察式子特征,直接写出,即可求出。【详解】观察的式子特征,明确各项关系,以及首末两项,即可写出,所以,相比,增加了后两项,少了第一项,故。【点睛】本题主要考查学生的数学抽象能力,正确弄清式子特征是解题关键。12、【解析】
首先根据题中求出的周期,然后利用周期性即可求出答案.【详解】由题知,有,故的周期为,故,又因为,有.故答案为:.【点睛】本题考查了三角函数的周期性,属于基础题.13、【解析】
本题首先应用余弦定理,建立关于的方程,应用的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【详解】由余弦定理得,所以,即解得(舍去)所以,【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.14、【解析】
先求出函数的定义域,再根据二次函数的单调性和的单调性,结合复合函数的单调性的判断可得出选项.【详解】因为,所以或,即函数定义域为,设,所以在上单调递减,在上单调递增,而在单调递增,由复合函数的单调性可知,函数的单调增区间为.故填:.【点睛】本题考查复合函数的单调性,注意在考虑函数的单调性的同时需考虑函数的定义域,属于基础题.15、218660【解析】
20万存款满一年到期后利息有200000×2.25%×(1-20%),本息和共200000×2.25%×(【详解】20万存款满一年到期后利息有200000×2.25%×(1-20%),本息和共200000×2.25%×(200000×(1.018)故填218660.【点睛】本题主要考查了银行存款的复利问题,由固定公式可用,本息和=本金×(1+利率×(1-16、-2【解析】试题分析:∵,∴,∴,∴=-2考点:本题考查了三角函数的性质点评:对于定义域为R的奇函数恒有f(0)=0.利用此结论可解决此类问题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)A=;(2).【解析】
(1)由正弦定理将角关系转化为变关系,再利用余弦定理得到答案.(2)利用余弦定理得到,代入面积公式得到答案.【详解】解:(1)因为所以由正弦定理可得整理可得左右同除以得到,即A=(2)由余弦定理,得,故,所以三角形的面积.【点睛】本题考查了是正弦定理,余弦定理,面积公式,意在考查学生的计算能力.18、(1)12;(2)1【解析】
(1)利用同角三角函数平方和商数关系求得tanα;利用两角和差正切公式求得结果;(2)利用二倍角公式化简所求式子,分子分母同时除以cos2α【详解】(1)∵0<α<π,cosα=-3∴tanα=(2)sin=【点睛】本题考查利用同角三角函数、两角和差正切公式、二倍角的正余弦公式化简求值问题,关键是能够利用求解关于正余弦的齐次式的方式,将问题转化为与tanα19、(1);(2).【解析】
(1)由成等差数列,且公差为,可得,利用余弦定理可构造关于的方程,解方程求得结果;(2)设,利用外接圆面积为,求得外接圆的半径.根据正弦定理,利用表示出三边,将周长表示为关于的函数,利用三角函数的值域求解方法求得最大值.【详解】(1)依次成等差数列,且公差为,,由余弦定理得:整理得:,解得:或又,则(2)设,外接圆的半径为,则,解得:由正弦定理可得:可得:,,的周长又当,即:时,取得最大值【点睛】本题考查了正弦定理、余弦定理解三角形、三角形周长最值的求解.求解周长的最值的关键是能够将周长构造为关于角的函数,从而利用三角函数的知识来进行求解.考查了推理能力与计算能力,属于中档题.20、(1);.(2)(3)存在,或者,【解析】
(1)令,得,故,代入等式得到,计算得到.(2)利用错位相减法得到前N项和.(3),假设存在正整数,,使成等差数列,则,解得或者.【详解】(1)令,得,所以将代入,得所以数列是以1为首项,2为公比的等比数列,即.(2)两式相减得到化简得到.(3),假设存在正整数,,使成等差数列则,即,因为,为正整数,所以存在或者,使得成等差数列.【点睛】本题考查了等差数列,等比数列的通项公式,错位相减法,综合性大,技巧性强,意在考查学生的综合应用能力.21、(Ⅰ)证明见解析;(Ⅱ)【解析】试题分析:(Ⅰ)连接AC,设AC∩BD=Q,又点E是PC的中点,则在△PAC中,中位线EQ∥PA,又EQ⊂平面BDE,PA⊄平面BDE.所以PA∥平面BDE;(Ⅱ)由平面PAB⊥平面ABCD,则PO⊥平面ABCD;作FM∥PO于AB上一点M,则FM⊥平面ABCD,进一步利用求得最后利用平行线分线段成比例求出λ的值试题解析:(Ⅰ)连接
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度版权保护委托合同3篇
- 小学心里健康活动主题班会
- 2024年度工程项目管理服务合同
- 2024年度企业间技术转让反贿赂协议2篇
- 《秋季校园市场营销》课件
- 民办体育俱乐部教练聘请合同(2024版)
- 公司美容项目合作简单协议书范本2篇
- 拍摄合作协议书(2篇)
- 广告招商合同
- 房屋认购协议书(2篇)
- 工科中的设计思维学习通超星课后章节答案期末考试题库2023年
- 教科版科学五年级上册第7课 计量时间和我们的生活课件
- creo电气布线设计培训教案
- 华为认证 HCIA-Security 安全 H12-711考试题库(共800多题)
- 国开电大《小学数学教学研究》形考任务3答案
- 畜牧兽医专业课程与教学改革实施方案
- 电工仪表及测量课件
- 教师个人成长档案电子模板
- 汉字素养大赛卷一(1)(初中)
- 最后一片常春藤叶课件
- 中国铸造产业地图
评论
0/150
提交评论