版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线与直线平行,则的值为A. B. C. D.2.已知直线的方程为,,则直线的倾斜角范围()A. B.C. D.3.若则所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.若正实数x,y满足不等式,则的取值范围是()A. B. C. D.5.已知,,且,则在方向上的投影为()A. B. C. D.6.设为等比数列的前n项和,若,则()A.-11 B.-8 C.5 D.117.已知直线与圆交于M,N两点,若,则k的值为()A. B. C. D.8.某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试.现随机抽取了24名笔试者的成绩,统计结果如下表所示.分数段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90]人数234951据此估计允许参加面试的分数线大约是()A.90 B.85C.80 D.759.若平面平面,直线,直线,则关于直线、的位置关系的说法正确的是()A. B.、异面 C. D.、没有公共点10.已知,两条不同直线与的交点在直线上,则的值为()A.2 B.1 C.0 D.-1二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期是________.12._______________。13.设数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),则数列{}的前10项的和为__.14.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.15.在平面直角坐标系中,圆的方程为.若直线上存在一点,使过所作的圆的两条切线相互垂直,则实数的取值范围是______.16.设满足不等式组,则的最小值为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.关于的不等式,其中为大于0的常数。(1)若不等式的解集为,求实数的取值范围;(2)若不等式的解集为,且中恰好含有三个整数,求实数的取值范围.18.数列an,n∈N*各项均为正数,其前n项和为S(1)求证数列Sn2为等差数列,并求数列(2)设bn=24Sn4-1,求数列bn的前n19.已知.(1)若三点共线,求实数的值;(2)证明:对任意实数,恒有成立.20.已知函数.(1)求的值;(2)设,求的值.21.已知直线与圆相交于,两点.(1)若,求;(2)在轴上是否存在点,使得当变化时,总有直线、的斜率之和为0,若存在,求出点的坐标:若不存在,说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:由两直线平行可知系数满足考点:两直线平行的判定2、B【解析】
利用直线斜率与倾斜角的关系即可求解.【详解】由直线的方程为,所以,即直线的斜率,由.所以,又直线的倾斜角的取值范围为,由正切函数的性质可得:直线的倾斜角为.故选:B【点睛】本题考查了直线的斜率与倾斜角之间的关系,同时考查了正弦函数的值域以及正切函数的性质,属于基础题.3、C【解析】
根据已知不等式可得,;根据各象限内三角函数的符号可确定角所处的象限.【详解】由知:,在第三象限故选:【点睛】本题考查三角函数在各象限内的符号,属于基础题.4、B【解析】
试题分析:由正实数满足不等式,得到如下图阴影所示的区域:当过点时,,当过点时,,所以的取值范围是.考点:线性规划问题.5、C【解析】
通过数量积计算出夹角,然后可得到投影.【详解】,,即,,在方向上的投影为,故选C.【点睛】本题主要考查向量的几何背景,建立数量积方程是解题的关键,难度不大.6、A【解析】设数列{an}的公比为q.由8a2+a5=0,得a1q(8+q3)=0.又∵a1q≠0,∴q=-2.∴===-11.故选A.7、C【解析】
先求得圆心到直线的距离,再根据圆的弦长公式求解.【详解】圆心到直线的距离为:由圆的弦长公式:得解得故选:C【点睛】本题主要考查了直线与圆的位置关系,还考查了运算求解的能力,属于基础题.8、C【解析】
根据题意可从样本中数据的频率考虑,即按成绩择优选择频率为的,根据题意得到所选的范围后再求出对应的分数.【详解】由题意得,参加面试的频率为,结合表中的数据可得,样本中[80,90]的频率为,由样本估计总体知,分数线大约为80分.故选C.【点睛】本题考查统计图表的应用,解题的关键是理解题意,同时还要正确掌握统计中的常用公式,属于基础题.9、D【解析】
根据条件知:关于直线、的位置关系异面或者平行,故没有公共点.【详解】若平面平面,直线,直线,则关于直线、的位置关系是异面或者平行,所以、没有公共点.故答案选D【点睛】本题考查了直线,平面的位置关系,意在考查学生的空间想象能力.10、C【解析】
联立方程求交点,根据交点在在直线上,得到三角关系式,化简得到答案.【详解】交点在直线上观察分母和不是恒相等故故答案选C【点睛】本题考查了直线方程,三角函数运算,意在考查学生的计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据周期公式即可求解.【详解】函数的最小正周期故答案为:【点睛】本题主要考查了正弦型函数的周期,属于基础题.12、【解析】
本题首先可根据同角三角函数关系式化简得出,然后根据两角差的正弦公式化简得出,最后根据二倍角公式以及三角函数诱导公式即可得出结果。【详解】,故答案为【点睛】本题考查根据三角函数相关公式进行化简求值,考查到的公式有、、以及,考查化归与转化思想,是中档题。13、【解析】试题分析:∵数列满足,且,∴当时,.当时,上式也成立,∴.∴.∴数列的前项的和.∴数列的前项的和为.故答案为.考点:(1)数列递推式;(2)数列求和.14、3【解析】
根据频率分布直方图,求得不小于40岁的人的频率及人数,再利用分层抽样的方法,即可求解,得到答案.【详解】根据频率分布直方图,得样本中不小于40岁的人的频率是0.015×10+0.005×10=0.2,所以不小于40岁的人的频数是100×0.2=20;从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,在[50,60)年龄段抽取的人数为.【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及频率分布直方图中概率的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题.15、【解析】试题分析:记两个切点为,则由于,因此四边形是正方形,,圆标准方程为,,,于是圆心直线的距离不大于,,解得.考点:直线和圆的位置关系.16、-6【解析】作出可行域,如图内部(含边界),作直线,当向下平移时,减小,因此当过点时,为最小值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)关于的不等式的解集为,得出判别式△,且,由此求出的取值范围;(2)由题意知判别式△,设,利用对称轴以及(1),,得出不等式的解集中恰好有三个整数,等价于,由此求出的取值范围.【详解】(1)由题意得一元二次不等式对应方程的判别式,结合,解得.(2)由题意得一元二次不等式对应方程的判别式,解得.又,所以.设,其对称轴为.注意到,,对称轴,所以不等式解集中恰好有三个整数只能是1、2、3,此时中恰好含有三个整数等价于:,解得.【点睛】本题考查了不等式的解法与应用问题.18、(1)证明见解析,an【解析】
(1)由题得Sn2-Sn-12=1(n≥2),即得数列Sn2为首项和公差都是1【详解】(1)证明:∵2anSn-an整理得,Sn又S1∴数列Sn2为首项和公差都是∴S又Sn>0∴n≥2时,an=S∴数列an的通项公式为a(2)解:∵bn∴Tn=1-1∵n∈N*依题意有23>1故所求最大正整数m的值为3.【点睛】本题主要考查等差数列性质的证明,考查项和公式求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.19、(1)-3;(2)证明见解析.【解析】分析:(1)由题意可得,结合三点共线的充分必要条件可得.(2)由题意结合平面向量数量积的坐标运算法则可得,则恒有成立.详解:(1),∵三点共线,∴,∴.(2),∴,∴恒有成立.点睛:本题主要考查平面向量数量积的运算法则,二次函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.20、(1);(2).【解析】试题分析:(1)直接带入求值;(2)将和直接带入函数,会得到和的值,然后根据的值.试题解析:解:(1)(2)考点:三角函数求值21、(1);(2)存在.【解析】
(1)由题得到的距离为,即得,解方程即得解;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司财务报销制度及流程1
- 医院出纳年度工作总结范文
- 参与家乡文化建设建议书范文(7篇)
- 体育会展业的供应链优化研究-洞察分析
- 微生物污染控制-第1篇-洞察分析
- 元宇宙艺术创作研究-洞察分析
- 游戏设计专业课程改革探索-洞察分析
- 虚拟现实技术在木材加工工艺分析中的应用-洞察分析
- 移动支付安全技术-洞察分析
- 微波背景辐射探测-洞察分析
- 2024年河南省中职对口升学高考语文试题真题(解析版)
- 《食品行业ERP应用》课件
- 41-降低悬挑式卸料平台安全隐患发生率 枣庄华厦(4:3定稿)
- 2023年不动产登记代理人《不动产登记法律制度政策》考前通关必练题库(含答案)
- 期末测试卷(一)2024-2025学年 人教版PEP英语五年级上册(含答案含听力原文无听力音频)
- 售后服务人员培训资料课件
- 禁止随地乱扔垃圾
- 期末 (试题) -2024-2025学年人教PEP版(2024)英语三年级上册
- 医学英语阅读二分册翻译及答案-参考
- 常见病的健康管理学习通超星期末考试答案章节答案2024年
- 认识西红柿课件图片
评论
0/150
提交评论