版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PedroCorreia:LauraFrías:IvánMoya:WindResourceAssessmentandPrediction-EPRTheNumericalWeatherPredictionmodels(NWP),havebeentraditionallyusedtopredicttherealstateofearth'satmosphere.Theinitialstateoftheatmosphere(ANALYSIS)isreproducedusingmeasurementsfromsatellites,weatherstations,etc,andconvertedtoaregulargridthatcanbeusedtofeedthemesoescalemodel.Byresolvingtheprimitiveequationswiththatinputdata,theNWPmodelscanpredicttheweatherinthefuture.There'sdifferenttypesofatmosphericmodels:Global:GlobalForecastingsystem(GFS)fromNcep/NCARandtheECMWFGlobalmodel,...Regional:Skiron;EtaModel;WRF;MM5,Hirlam;Aladin,...NWP:MesoescaleModels–ShortDescriptionMesoescalemodelthatusesthebaseoftheETAmodel.RequiresanUNIXOperatingSystem;Itisabletousetheweatherinputdatafrom;GFS(GlobalForecastingSystem);NCEP/NCARReanalysis1;ECMWF(GlobalModel)CENERworkswithSKIRONsinceOctober,2023.CENERworkswithSKIRONsinceOctober,2023.Itwasfirstconfiguredtorunreal-timeforecasts,allowingCENERtoobtaindailyweatherpredictions.Fromsometimenow,themodelisalsobeenusedtowindanddirectsolarradiationresourceassessmentinanwiderangeoflocationsthroughouttheglobe.Togeneratewind/solarradiationmaps,it'sdesirabletorunSKIRONaslongaspossible(morethan5years),inordertoobtainthelongtermbehaviorofthedifferentmeteorologicalvariables,suchaspressure,windvelocityanddirection(atseveralheightsabovegroundlevel),directsolarradiation,temperature,etc.NWP:MesoescaleModels–SKIRON
SKIRON:Real-timepredictionsIt'sexecutedin16processorswithanhorizonof180ph->5h30minHorizontalResolution:0.1ºx0.1º(~10kmx10km)->341x281ptsVerticalResolution:38Etaverticallevels.NonestingTemporalresolution:outputfrequency=1h(180dailyfiles)Dailydownloadandstorageof:GFS12UTC,SST,SnowcoverandSnowdepthBackupsystem:Thesamemodelconfiguration,indifferentmachineswhicharelocatedinanotherarea.Thisallowsustoguaranteetheclientsforecastsincaseofafailureinthemainsystem(powerfailure,computermalfunction,networkproblems,etc).WindForecastandWindEnergyproductionusingSKIRON
SKIRON:Real-timeReal-timedomainfromOctober2023untilNovember2023.DomainsinceNovember2023untilnow.WindForecastandWindEnergyproductionusingSKIRON
Intheelectricitygridatanymomentbalancemustbemaintainedbetweenelectricityconsumptionandgeneration-otherwisedisturbancesinpowerqualityorsupplymayoccur.
Windgenerationisadirectfunctionofwindspeedand,incontrasttoconventionalgenerationsystems,isnoteasilydispatchable.Fluctuationsofwindgenerationthusreceiveagreatamountofattention.
Managingthevariabilityofwindgenerationisthekeyaspectassociatedtotheoptimalintegrationofthatrenewableenergyintoelectricitygrids.Reasonforwindpowerforecasts
Statisticalpredictionmethodsarebasedononeorseveralmodels(linearandnon-linear)thatestablishtherelationbetweenhistoricalvaluesofpower,aswellashistoricalandforecastvaluesofmeteorologicalvariables,andwindpowermeasurements.
Modelparametersareestimatedfromasetofpastavailabledata,andtheyareregularlyupdatedduringonlineoperationbyaccountingforanynewlyavailableinformation(i.e.meteorologicalforecastsandpowermeasurements).StatisticalapproachtowindpowerFORECASTSFORTHEDAILYMARKET.LocalPredisoperationalsince2023andhasbeencontinuouslydevelopedsincethen.Reliabilityandaccuracyarethemaincharacteristicsofthesystem.
Reliabilityisbasedontheredundancyof:Hardware.Inputdata.Processes.Accuracyisobtainedthroughthecombinationofforecastswithdifferentinformation:“multi-modelensemble”.SupportVectorMachinetechnology,PCAalgorithms,dataqualitycontrol.Forecastsforoffshorewindfarms:Windfarmenergyproduction.Waves(WAM4highresolutionwaveforecasts).reducedvisibility.Operationalsince2001DESCRIPTIONOFLOCALPREDFORECASTINGSYSTEMGFSSKIRONECMWFPCAMOSENSEMBLEMOS2DELIVERYFTPCENERFTPCLIENTFTPAGENTSVMZAMUDIOCENERMultimodelensembleDESCRIPTIONOFLOCALPREDFORECASTINGSYSTEMCombinationAlgorithmDESCRIPTIONOFLOCALPREDFORECASTINGSYSTEMLocalPredincludesacombinationalgorithmdevelopedincollaborationwithDTU-IMM.
Thelevelofimprovementdependsontheerroroftheindividualforecastsandonthelevelofcorrelationbetweenthem.
Thecombinationisabletoimprovethebestindividualforecast.windfarmsclusteringanalysisEvolutionerrorindexvsthenumberofagreggatedwindfarmswindfarmsclusteringanalysisEconomicimpactobtainedbytheaggregationofwindfarmsFORECASTSFORTHEINTRADAYMARKETSIntra-dailymarketprocess.Focusonveryshort-termforecasts
TheactualSpanishelectricalmarket,allowsustocorrectthewindenergyforecastingpresentedinthedailymarketbymeansoftheintradailymarket.Thismarketisorganizedintosixsessionsandagentsthathavepreviouslyparticipatedinthedailymarketcanpresentnewprogramofproduction.
Thenewpredictionsmustbepresentedbetweentheopeningandclosinghoursofthesession.
Thus,ineachintradailysession,wecorrectamaximumoffivepredictions,andtakingintoaccounttheclosinghourofthesession,wecanusefromfourthtoeighthstepahead.Thereforetheimportanceoftheshorttimeforecastandsotheneedofashorttimemodelfallshere.Intra-dailymarketprocess.Focusonveryshort-termforecasts
Anewmodelforshort-termpredictionhasbeendevelopedtakingintoaccounttheSpanishmarketrules.Thismodelisfocusedinshortforecastinghorizons.First,itusesonlinepowerproductiondataofthewindfarmstobuilddifferenttimeseriesmodels(Box-JenkinsmethodologyandaversionofHoltWintersAlgorithm).Ontheotherhand,itutilizesexistingforecastsforthedailymarketproducedbyCENER’sLocalPredmodelbasedonmesoscaleNWPandMOScorrections.Finallyitimplementsacombinationalgorithmthatofferstheoptimalforecastforeachhorizon.MethodologyoftheshorttimeforecastingmodelofCENERResultsobtainedWepresenttheresultsobtainedfromtheCENERshorttimemodelappliedonamediumwindfarmfromSpainbetweenFebruaryandDecember.Wepresenttheimprovementofthenewmodelagainstthepersistenceasshorttimepredictionandagainstthedailymarketforecasting.EUROPEANPROJECTSR+DEuropeanprojects(VIandVIIFrameworkProgram):UPWIND
“Findingdesignsolutionsforverylargewindturbines”POW’WOW
“PredictionOfWaves,WakesandOffshoreWind”ANEMOS
"DevelopmentofaNextGenerationWindResourceForecastingSystemfortheLarge-ScaleIntegrationofOnshoreandOffshoreWindFarms"ANEMOS.PLUS
“AdvancedToolsfortheManagementofElectricityGridswithLarge-ScaleWindGeneration”SAFEWIND
“Multi-scaledataassimilation,advancedwindmodellingandforecastingwithemphasistoextremeweathersituationsforasafelarge-scalewindpowerintegration”
PUBLICATIONS
[1]Martí,I.,Nielsen,T.S.,Madsen,H.,etal.Predictionmodelsincomplexterrain.ProceedingsoftheEuropeanWindEnergyConference.Copenhagen,July2023.[2]Martí,I.,Usaola,J.etal.Windpowerpredictionincomplexterrain.LocalPredandSipreólico.ProceedingsoftheEuropeanWindEnergyconference,June2023.[3]Martí,I.etal.Windpowerpredictionincomplexterrain:fromthesynopticscaletothelocalscale.“Thescienceofmakingtorquefromwind”.Delft.TheNetherlands,2023.[4]M.Gastón,L.Frías,M.J.SanIsidro,I.Martí.Exploringthelimitsofwindfarmgroupingforpredictionerrorcompensation.EWEC2023.[5]
L.Frías,M.Gastón,I.Martí.Anewmodelforwindenergyforecastingfocusedintheintra-dailymarkets.EWEC2023.[6]L.Frías,E.Pascal,U.Irigoyen,E.Cantero,Y.Loureiro,S.Lozano,P.M.Fernandes,I.Martí.SupportVectorMachinesinthewindenergyframework.Anewmodelforwindenergyforecasting.EWEC2023.ThedailySKIRONforecastscanbevisitedat
.CloudCover,Snow,Wind,Temperature,Precipitation,Localforecaststomaincities,etc...Skironreal-timemeteorologicalproducts:
Anomalies:Windand/orEnergyDensity:Anomaliesmapswithan1kmx1kmresolution.ItisnecessarytopossessasimulateddatabasewithSKIRONtobeabletocalculatethesemaps.It'spossibletocalculatetheanomaliesforeverydesiredperiod(daily,weekly,monthly,seasonally,yearly,….etc)Thereferenceperiodusedtoobtaintheseproductcanalsobechangedaccordinglytotheclient’sneeds.There'salsothepossibilitytogeneratevariabilitymapstohelpidentifyunstable(regardingwindresource)regions.TheyaredeliveredinGISformatwithseverallayersattached(Anomaly;topography,windfarmlocations,etc)Skironreal-timemeteorologicalproducts:FigureInterpretation:AttheEbroValley,theFebruarywindvelocitywas20%lessthanthelast6yearsmean.Typesofanomalies:WindandEnergyDensityMonthlyYearlySeasonly...Advantage!!:Allowstoindentifyinaveryintuitiveway,ifagivenregionhadregistedabove/underaveragewinds.→Easytoidentifyapossiblecauseforover/underproductionofawindfarm.Skironreal-timemeteorologicalproducts-AnomaliesTheuseofmesoescalemodelsforwindresourceassessmentisarecentactivity.Thestandardmethodologymayvary,accordinglywiththemodeluser,butthegoalisthesame:TotakeadvantageoftheNWPmodelscapacitytopredictwind.Methodology??-Themaingoalistodeterminethewindclimatologyinsteadofthereal-timeprediction.Insteadofpredictinthefuture,longperiods(years)oftimearesimulatedusingastoredinputdataarchive(GFS,Reanalysis).SKIRON:WindresourceAssessmentThemethodologiesusedintheseclimaticsimulationscanbeverydifferent,butsomeaspectsarecommon:1. InitialDataThemodelusedtocalculatethewindmapneedsinitialinputdataandinitialboundaryconditions.Therearefewavailablesourcesofthatinformationtosuchlongperiods:Reanalysis(NCAR/NCEP,ECMWF,JRA)orthestoredoutputsfromtheGFSandECMWFmodels.2. ClimaticSimulation.Itisnecessarytoobtainalongtermrepresentativesimulationoftheareainquestion.Theonlyavailableoptionsaretryingtosimulatethelargestavailableperiod:5,10,15ormoreyears,orsimulateaclimatologicalrepresentativeyeartotheregionofinterest.SKIRON:WindresourceAssessmentExamplesofmethodologiesusedtoobtainarepresentativeWindAtlas.SKIRON:WindresourceAssessmentCENERtestcase:SKIRON:WindresourceAssessmentInCenercase,24weatherstationsinNavarra,thatfullfillalltherequirements,havebeencarefullyselectedandtheresultshavebeenanalyzedtakingintoconsiderationthecomplexityoftheterrain,meanwindvelocityandstation.MAE,RMSEandBiaswerecalculated:Ifwelookonlytothesimulationswithreanalysisdata,itcanbestatedthatthelowestMAEisachievedwiththe0,03ºx0,03ºresolution,butthelowestBiasisachievedinthe0,1ºx0,1ºresolution.Ifweanalyzeallthesimulationsmade,it'seasytoseethattheoptimalconfigurationtotheSKIRONmodelisGFSasinputdataandanhorizontalresolutionof0,05ºx0,05º.SKIRON:WindresourceAssessment“Climatic”Simulations:HorizontalResolution:0.05ºx0.05º(~5kmx5km)VerticalResolutions:50Etaverticallevels.NonestingTemporalresolution:outputfrequency=1h(48hhorizon)Inputs:GFS12UTC,SST,SnowcoverandSnowdepthAvailableperiodatCENER(fromJune2023untilnow–8years)CENERcomputacionalResources:618processors640GBRAMUnixOperatingSystemSKIRON:WindresourceAssessmentMEASUREDSKIRON0.05ºx0.05ºGFS1ºx1ºHOURLYWINDVALUESVALIDATIONFILTERINGWINDMAPHOURLYTIMESERIESGISWEBSERVICESKIRON:WindresourceAssessment01/01/2023:…………..48hourlymaps31/12/2023:…………..48hourlymaps......(Firstrun)(Lastrun)(1274runs)Toruneachyear,182simulations,eachonewithan48hourspredictionhorizonarelaunched.Sothenumberofsimulationsneededtoruneachcaseare:
NºYearsx182=NºSimulationsSKIRON:WindresourceAssessment++++++++7(y)x365(d)x24(h)=61320hourlywindmapsTheresultfromallthesimulationsisonewindmapforeveryhourinthechosenperiod.ADVANTAGE!!:Thepossibilitytovalidatethewindmapwithrealmeasures.SKIRON:WindresourceAssessmentInTunisia,CENERusedthemeasurementsfrom17weatherstations,withanemometersinstalledat20mand40m.ThatallowedustoperformanexhaustivevalidationofCENERmethodologytoobtainwindmapsandvirtualseries.TUNISIAWINDMAPSKIRON:WindresourceAssessment–TunisiaIntheGreatLakesWindMap,CENERusedwindmeasuresfrom50weatherstations,mostofthemhadanemometersatan10mheight.Thiswasagoodtestcasetovalidatethesimulatedwind,bothonshoreandoffshore.SKIRON:WindresourceAssessment–GreatLakesWiththegoalofvalidatetheoffshorevirtualseriesgeneratedwithSKIRON,awindmapfortheNorthSeawasgenerated:
FINOValidation:6months:January-June2023Datacoverage:90%SKIRON:Resolution:0.05º,50verticallevels,1hrForecastmaximumhorizon:48hrMeasures:Windat:33,40,50,70,80,90mTemperatureat:30,40,50,70,100mRHat:33,50,90mTowereffectcorrectedinthewindvalues.SKIRON:WindresourceAssessmentOffshore–FinoExcellentresultsbothinVelocityanddirectionSKIRON:WindresourceAssessmentOffshore–FinoSonicsCupsFino154.014ºN6.5905ºESKIRON:WindresourceAssessmentOffshore–FinoSKIRON:WindresourceAssessmentOffshore–FinoMeanWindMapfromthedesiredregionwithafinalhorizontalresolutionof1kmx1km(Inversedistanceweightedinterpolation);Themeanwindcouldbecalculatedathubheight;Windrosesandprobabilitydistributioninrepresentativepointsinjpgformat.DeliveredinGISformatwithseverallayersofinformation(MeanWind,Topography,Protectedareas;Electricgrid,etc)POLANDWINDMAPTUNISIAWINDMAPNORTHSEAWINDMAPEASTEUROPEWINDMAPSKIRON:WindresourceAssessmentOffshore–DerivedproductsGISFormatcompatible KMZFormat–GoogleEarth SKIRON:WindresourceAssessmentOffshore–DerivedproductsEnergyDensityMapsMeanEnergyMapsfromthedesiredregionatan1kmx1kmhorizontalresolution.Theenergyiscalculated,pointbypoint,toeveryhourusingthepressureandtemperaturesimulatedwithSKIRON.Thismeansthattheairdensityusedit'salsocalculatedandnotaveragedtotheentiredomain.Theenergydensityobtainedisrepresentativeofthesimulatedperiod.It'scalculatedatthehubheight.It'sdeliveredinGISformat(Energydensity+standardlayers)Weibullparametersmaps,Individualmapsfortheparameters(A,k)totheentiresimulatedregionatafinalhorizontalresolutionof1kmx1km.AlsodeliveredinGISformat,withthestandardinformation.SKIRON:WindresourceAssessmentOffshore–DerivedproductsCENERsimulateddomains:Wind:IberianPeninsula;Poland;Romania;GreatLakes;Mexico;CentralAmerica,Chile;Peru;Fino,Brazil(NERegion)SolarRadiation:Australia;NorthAfrica;UnitedEmiratesCENERSimulatedDomains(Wind/SolarRadiationMaps)Withthegoaltosuppressthelackofmeasurementsinsomelocations,CENERhasdevelopedandvalidatedamethodologycapableofgeneratingvirtualwindseries(velocityanddirection),energydensity,temperature,pressure,etc,usingthemesoescalemodelSKIRON.Inordertoobtainthewindseriesatadesiredlocation,hourlywindoutputsfromSKIRONareusedasinputtothemicroscalemodelWasPandthencorrectedbytheAdfactorgivenbytheWasP/CFDsimulation.WindresourceAssessment–DownscalingandVirtualWindSeriesAdvantage!!:AllowstodetectthelocaleffectscausedbythelocaltopographythatSKIRONcan'tresolve.SKIRON0.05ºx0.05ºHOURLYWINDVALUESWAsPSRTMAdFACTORHOURLYTIMESERIESHIGHRESOLUTIONWUNDMAPSWindresourceAssessment–DownscalingandVirtualWindSeriesHourlywindoutputsfromSKIRONareusedasinputtothem
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度新型科技项目反担保合同范本3篇
- 2024年二手货车购买合同范本6篇
- 2024年地毯购销保密协议2篇
- 2024年度区块链技术医疗健康数据管理平台合同3篇
- 儿童医院特色环境设计建议
- 2024年地产买卖合同3篇
- 2024年度股权转让合同标的:某科技公司0%股权转让2篇
- 2024年度男方婚内出轨证据收集协议5篇
- 2024年二手房买卖定金合同房产增值服务协议3篇
- 2024年度养殖牛养殖风险评估与控制合同3篇
- 人教部编版16昆明的雨教学课件
- 城企联动普惠养老合作协议(参考文本)参考
- 风速计算公式及方法风量风速计算方法
- 幼儿园中班社会:《安全过马路》 PPT课件
- 痛感新闻作文立意分析与范文
- 个人房屋租赁合同模板
- 技术工程部岗位职责说明书(工程部)
- 《光辉岁月》教案
- 英文审稿意见汇总
- 儿童早期口腔健康管理-948-2020年华医网继续教育答案
- 钢卷尺检定证书
评论
0/150
提交评论