2023年湖北省普通高中协作体数学高一下期末统考模拟试题含解析_第1页
2023年湖北省普通高中协作体数学高一下期末统考模拟试题含解析_第2页
2023年湖北省普通高中协作体数学高一下期末统考模拟试题含解析_第3页
2023年湖北省普通高中协作体数学高一下期末统考模拟试题含解析_第4页
2023年湖北省普通高中协作体数学高一下期末统考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.过点且与直线平行的直线方程是()A. B.C. D.2.已知向量,的夹角为,且,,则与的夹角等于A. B. C. D.3.已知,则().A. B. C. D.4.已知数列满足,且是函数的两个零点,则等于()A.24 B.32 C.48 D.645.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.则获得复赛资格的人数为()A.640 B.520 C.280 D.2406.根据如下样本数据x

3

4

5

6

7

8

y

可得到的回归方程为,则()A. B. C. D.7.连续两次抛掷一枚质地均匀的硬币,出现正面向上与反面向上各一次的概率是(

)A. B. C. D.8.将函数的图像向右平衡个单位长度,再把图象上所有点的横坐标伸长到原来的倍(纵坐标不变)得到函数的图象,则下列说法正确的是()A.函数的最大值为 B.函数的最小正周期为C.函数的图象关于直线对称 D.函数在区间上单调递增9.已知满足,且,那么下列选项中一定成立的是()A. B. C. D.10.设是数列的前项和,时点在抛物线上,且的首项是二次函数的最小值,则的值为()A.45 B.54 C.36 D.-18二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的前项和为,,则__________.12.将边长为1的正方形ABCD沿对角线AC折起,使平面ACD⊥平面ABC,则折起后B,D两点的距离为________.13.函数的反函数为____________.14.在△ABC中,a、b、c分别为角A、B、C的对边,若b·cosC=c·cosB,且cosA=,则cosB的值为_____.15.在数列中,,,,则_____________.16.若关于x的不等式的解集是,则_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)从某厂生产的一批零件1000个中抽取20个进行研究,应采用什么抽样方法?(2)对(1)中的20个零件的直径进行测量,得到下列不完整的频率分布表:(单位:mm)分组频数频率268合计201①完成频率分布表;②画出其频率分布直方图.18.如图,有一直径为8米的半圆形空地,现计划种植甲、乙两种水果,已知单位面积种植甲水果的经济价值是种植乙水果经济价值的5倍,但种植甲水果需要有辅助光照.半圆周上的处恰有一可旋转光源满足甲水果生长的需要,该光源照射范围是,点在直径上,且.(1)若,求的长;(2)设,求该空地产生最大经济价值时种植甲种水果的面积.19.已知圆过点,且与圆关于直线:对称.(1)求圆的标准方程;(2)设为圆上的一个动点,求的最小值.20.某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在内,发布成绩使用等级制.各等级划分标准见下表.规定:三级为合格等级,D为不合格等级.为了解该校高一年级学生身体素质情况,从中抽取了名学生的原始成绩作为样本进行统计.按照的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示.(I)求和频率分布直方图中的的值,并估计该校高一年级学生成绩是合格等级的概率;(II)在选取的样本中,从两个等级的学生中随机抽取2名学生进行调研,求至少有一名学生是等级的概率.21.已知单调递减数列的前项和为,,且,则_____.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

先由题意设所求直线为:,再由直线过点,即可求出结果.【详解】因为所求直线与直线平行,因此,可设所求直线为:,又所求直线过点,所以,解得,所求直线方程为:.故选:D【点睛】本题主要考查求直线的方程,熟记直线方程的常见形式即可,属于基础题型.2、C【解析】

根据条件即可求出,从而可求出,,,然后可设与的夹角为,从而可求出,根据向量夹角的范围即可求出夹角.【详解】,;,,;设与的夹角为,则;又,,故选.【点睛】本题主要考查向量数量积的定义运用,向量的模的求法,以及利用数量积求向量夹角.3、A【解析】

.所以选A.【点睛】本题考查了二倍角及同角正余弦的差与积的关系,属于基础题.4、D【解析】试题分析:依题意可知,,,,所以.即,故,,,.,所以,又可知.,故.考点:函数的零点、数列的递推公式5、B【解析】

由频率分布直方图得到初赛成绩大于90分的频率,由此能求出获得复赛资格的人数.【详解】初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,由频率分布直方图得到初赛成绩大于90分的频率为:1﹣(0.0025+0.0075+0.0075)×20=0.1.∴获得复赛资格的人数为:0.1×800=2.故选:B.【点睛】本题考查频率分布直方图的应用,考查频数的求法,考查频率分布直方图等基础知识,是基础题.6、A【解析】试题分析:依据样本数据描点连线可知图像为递减且在轴上的截距大于0,所以.考点:1.散点图;2.线性回归方程;7、C【解析】

利用列举法求得基本事件的总数,利用古典概型的概率计算公式,即可求解.【详解】由题意,连续两次抛掷一枚质地均匀的硬币,基本事件包含:(正面,正面),(正面,反面),(反面,正面),(反面,反面),共有4中情况,出现正面向上与反面向上各一次,包含基本事件:(正面,反面),(反面,正面),共2种,所以的概率为,故选C.【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中熟练利用列举法求得基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.8、C【解析】

根据函数y=Asin(ωx+φ)的图象变换规律,得到g(x)的解析式,再利用正弦函数的图象性质,得出结论.【详解】将函数的图象向右平移个单位长度,可得y=2sin(2x)的图象,再把图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数g(x)=2sin(x)的图象,故g(x)的最大值为2,故A错误;显然,g(x)的最小正周期为2π,故B错误;当时,g(x)=,是最小值,故函数g(x)的图象关于直线对称,故C正确;在区间上,x∈[,],函数g(x)=2sin(x)单调递减,故D错误,故选:C.【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象性质应用,属于基础题.9、D【解析】

首先根据题意得到,,结合选项即可找到答案.【详解】因为,所以.因为,所以.故选:D【点睛】本题主要考查不等式的性质,属于简单题.10、B【解析】

根据点在抛物线上证得数列是等差数列,由二次函数的最小值求得首项,进而求得的值.【详解】由于时点在抛物线上,所以,所以数列是公差为的等差数列.二次函数,所以.所以.故选:B【点睛】本小题主要考查等差数列的证明,考查二次函数的最值的求法,考查等差数列前项和公式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分析:由,当时,当时,相减可得,则,由此可以求出数列的通项公式详解:当时,当时由可得二式相减可得:又则数列是公比为的等比数列点睛:本题主要考查了等比数列的通项公式即数列递推式,在解答此类问题时看到,则用即可算出,需要注意讨论的情况。12、1.【解析】

取AC的中点E,连结DE,BE,可知DE⊥AC,由平面ACD⊥平面ABC,可得DE⊥平面ABC,DE⊥BE,而,再结合ABCD是正方形可求出.【详解】取AC的中点E,连结DE,BE,显然DE⊥AC,因为平面ACD⊥平面ABC,所以DE⊥平面ABC,所以DE⊥BE,而,所以,.【点睛】本题考查了空间中两点间的距离,把空间角转化为平面角是解决本题的关键.13、【解析】

由原函数的解析式解出自变量x的解析式,再把x和y交换位置,即可得到结果.【详解】解:记∴故反函数为:【点睛】本题考查函数与反函数的定义,求反函数的方法和步骤,注意反函数的定义域是原函数的值域.14、【解析】

利用余弦定理表示出与,代入已知等式中,整理得到,再利用余弦定理表示出,将及的值代入用表示出,将表示出的与代入中计算,即可求出值.【详解】由题意,由余弦定理得,代入,得,整理得,所以,即,整理得,即,则,故答案为.【点睛】本题考查了解三角形的综合应用,高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.15、5【解析】

利用递推关系式依次求值,归纳出:an+6=an,再利用数列的周期性,得解.【详解】∵a1=1,a2=5,an+2=an+1-an(n∈N*),∴a3=a2-a1=5-1=4,同理可得:a4=-1,a5=-5,a6=-4,a7=1,a8=5,…,∴an+6=an.则a2018=a6×336+2=a2=5【点睛】本题考查了递推关系、数列的周期性,考查了推理能力与计算能力.16、-14【解析】

由不等式的解集求出对应方程的实数根,利用根与系数的关系求出的值,从而可得结果.【详解】不等式的解集是,所以对应方程的实数根为和,且,由根与系数的关系得,解得,,故答案为.【点睛】本题主要考查一元二次不等式的解集与一元二次不等式的根之间的关系,以及韦达定理的应用,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)系统抽样;(2)①分布表见解析;②直方图见解析.【解析】

(1)因需要研究的个体很多,且差异不明显,适宜用系统抽样.(2)①直接计算频率即可.②根据①中计算出的数据,用每一组的频率/组距作为纵坐标,即可做出频率分布直方图.【详解】某厂生产的一批零件1000个,差异不明显,且因需要研究的个体很多.

所以适宜用系统抽样.(2)①频率分布表为分组频数频率20.160.380.440.2合计201②频率分布直方图为.分组频数频率频率/组距20.10.0260.30.0680.40.0840.20.04合计201【点睛】本题考查频率分布表和根据频率分布表绘制频率分布直方图,属于基础题.18、(1)1或3(2)【解析】

试题分析:(1)在中,因为,,,所以由余弦定理,且,,所以,解得或(2)该空地产生最大经济价值等价于种植甲种水果的面积最大,所以用表示出,再利用三角函数求最值得试题解析:(1)连结,已知点在以为直径的半圆周上,所以为直角三角形,因为,,所以,,在中由余弦定理,且,所以,解得或,(2)因为,,所以,所以,在中由正弦定理得:所以,在中,由正弦定理得:所以,若产生最大经济效益,则的面积最大,,因为,所以所以当时,取最大值为,此时该地块产生的经济价值最大考点:①解三角形及正弦定理的应用②三角函数求最值19、(1);(2).【解析】

试题分析:(1)两个圆关于直线对称,那么就是半径相等,圆心关于直线对称,利用斜率相乘等于和中点在直线上建立方程,解方程组求出圆心坐标,同时求得圆的半径,由此求得圆的标准方程;(2)设,则,代入化简得,利用三角换元,设,所以.试题解析:(1)设圆心,则,解得,则圆的方程为,将点的坐标代入得,故圆的方程为.(2)设,则,且,令,∴,故的最小值为-1.考点:直线与圆的位置关系,向量.20、(I),;(II).【解析】试题分析:(I)根据频率直方图的相关概率易求,依据样本估计总体的思想可得该校高一年级学生成绩是合格等级的概率;(II)记“至少有一名学生是等级”事件为,求事件对立事件的的概率,可得.试题解析:(I)由题意可知,样本容量因为成绩是合格等级人数为:人,抽取的50人中成绩是合格等级的频率为,依据样本估计总体的思想,所以,该校高一年级学生成绩是合格等级

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论