版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数定义域是()A. B. C. D.2.等差数列的前项和为,若,则()A.27 B.36 C.45 D.543.直线与平行,则的值为()A. B.或 C.0 D.-2或04.直线在轴上的截距为()A. B. C. D.5.在中,已知是边上一点,,,则等于()A. B. C. D.6.已知,则等于()A. B. C. D.37.已知点在第三象限,则角的终边在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.在平面坐标系中,是圆上的四段弧(如图),点P在其中一段上,角以Ox为始边,OP为终边,若,则P所在的圆弧最有可能的是()A. B. C. D.9.以圆形摩天轮的轴心为原点,水平方向为轴,在摩天轮所在的平面建立直角坐标系.设摩天轮的半径为米,把摩天轮上的一个吊篮看作一个点,起始时点在的终边上,绕按逆时针方向作匀速旋转运动,其角速度为(弧度/分),经过分钟后,到达,记点的横坐标为,则关于时间的函数图象为()A. B.C. D.10.在中,,,则的最大值为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.直线与直线的交点为,则________.12.在高一某班的元旦文艺晚会中,有这么一个游戏:一盒子内装有6张大小和形状完全相同的卡片,每张卡片上写有一个成语,它们分别为意气风发、风平浪静、心猿意马、信马由缰、气壮山河、信口开河,从盒内随机抽取2张卡片,若这2张卡片上的2个成语有相同的字就中奖,则该游戏的中奖率为________.13.黄金分割比是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为,约为0.618,这一数值也可以近似地用表示,则_____.14.函数的值域是________15.在三棱锥中,平面,是边长为2的正三角形,,则三棱锥的外接球的表面积为__________.16.已知扇形的半径为6,圆心角为,则该扇形的面积为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(I)当时,求不等式的解集;(II)若关于的不等式有且仅有一个整数解,求正实数的取值范围.18.如图,在四棱锥中,平面,底面是棱长为的菱形,,,是的中点.(1)求证://平面;(2)求直线与平面所成角的正切值.19.设一元二次不等式的解集为.(Ⅰ)当时,求;(Ⅱ)当时,求的取值范围.20.在等差数列中,,(1)求的通项公式;(2)求的前n项和21.设.(1)用表示的最大值;(2)当时,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
若函数有意义,则需满足,进而求解即可【详解】由题,则,解得,故选:A【点睛】本题考查具体函数的定义域,属于基础题2、B【解析】
利用等差数列的性质进行化简,由此求得的值.【详解】依题意,所以,故选B.【点睛】本小题主要考查等差数列的性质,考查等差数列前项和公式,属于基础题.3、A【解析】
若直线与平行,则,解出a值后,验证两条直线是否重合,可得答案.【详解】若直线与平行,
则,
解得或,
又时,直线与表示同一条直线,
故,
故选A.本题考查的知识点是直线的一般式方程,直线的平行关系,正确理解直线平行的几何意义是解答的关键.4、A【解析】
取计算得到答案.【详解】直线在轴上的截距:取故答案选A【点睛】本题考查了直线的截距,属于简单题.5、A【解析】
利用向量的减法将3,进行分解,然后根据条件,进行对比即可得到结论【详解】∵3,∴33,即43,则,∵λ,∴λ,故选A.【点睛】本题主要考查向量的基本定理的应用,根据向量的减法法则进行分解是解决本题的关键.6、C【解析】
等式分子分母同时除以即可得解.【详解】由可得.故选:C.【点睛】本题考查了三角函数商数关系的应用,属于基础题.7、B【解析】
根据同角三角函数间基本关系和各象限三角函数符号的情况即可得到正确选项.【详解】因为点在第三象限,则,,所以,则可知角的终边在第二象限.故选:B.【点睛】本题考查各象限三角函数符号的判定,属基础题.相关知识总结如下:第一象限:;第二象限:;第三象限:;第四象限:.8、A【解析】
根据三角函数线的定义,分别进行判断排除即可得答案.【详解】若P在AB段,正弦小于正切,正切有可能小于余弦;若P在CD段,正切最大,则cosα<sinα<tanα;若P在EF段,正切,余弦为负值,正弦为正,tanα<cosα<sinα;若P在GH段,正切为正值,正弦和余弦为负值,cosα<sinα<tanα.∴P所在的圆弧最有可能的是.故选:A.【点睛】本题任意角的三角函数的应用,根据角的大小判断角的正弦、余弦、正切值的正负及大小,为基础题.9、B【解析】
根据题意,点的横坐标,由此通过特殊点的坐标,判断所给的图象是否满足条件,从而得出结论.【详解】根据题意可得,振幅,角速度,初相,点的横坐标,故当时,,当时,为的最大值,故选:B.【点睛】本题考查三角函数图象的实际应用以及余弦型函数图象的特征,其中,求出函数模型的解析式是解题的关键,考查推理能力,属于中等题.10、A【解析】
利用正弦定理得出的外接圆直径,并利用正弦定理化边为角,利用三角形内角和关系以及两角差正弦公式、配角公式化简,最后利用正弦函数性质可得出答案.【详解】中,,,则,,其中由于,所以,所以最大值为.故选A.【点睛】本题考查正弦定理以及两角差正弦公式、配角公式,考查基本分析计算能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
(2,2)为直线和直线的交点,即点(2,2)在两条直线上,分别代入直线方程,即可求出a,b的值,进而得a+b的值。【详解】因为直线与直线的交点为,所以,,即,,故.【点睛】本题考查求直线方程中的参数,属于基础题。12、【解析】
先列举出总的基本事件,在找出其中有2个成语有相同的字的基本事件个数,进而可得中奖率.【详解】解:先观察成语中的相同的字,用字母来代替这些字,气—A,风—B,马—C,信—D,河—E,意—F,用ABF,B,CF,CD,AE,DE分别表示成语意气风发、风平浪静、心猿意马、信马由缰、气壮山河、信口开河,则从盒内随机抽取2张卡片有共15个基本事件,其中有相同字的有共6个基本事件,该游戏的中奖率为,故答案为:.【点睛】本题考查古典概型的概率问题,关键是要将符合条件的基本事件列出,是基础题.13、【解析】
代入分式利用同角三角函数的平方关系、二倍角公式及三角函数诱导公式化简即可.【详解】.故答案为:2【点睛】本题考查同角三角函数的平方关系、二倍角公式及三角函数诱导公式,属于基础题.14、【解析】
利用函数的单调性,结合函数的定义域求解即可.【详解】因为函数的定义域是,,函数是增函数,所以函数的最小值为:,最大值为:.所以函数的值域为:,.故答案为,.【点睛】本题考查函数的单调性以及函数的值域的求法,考查计算能力.15、【解析】
设三棱锥的外接球半径为,利用正弦定理求出的外接圆半径,再利用公式可计算出外接球半径,最后利用球体的表面积公式可计算出结果.【详解】由正弦定理可得,的外接圆直径为,,设三棱锥的外接球半径为,平面,,因此,三棱锥的外接球表面积为,故答案为.【点睛】本题考查多面体的外接球,考查球体表面积的计算,在求解直棱柱后直棱锥的外接球,若底面外接圆半径为,高为,可利用公式得出外接球的半径,解题时要熟悉这些结论的应用.16、【解析】
用弧度制表示出圆心角,然后根据扇形面积公式计算出扇形的面积.【详解】圆心角为对应的弧度为,所以扇形的面积为.故答案为:【点睛】本小题主要考查角度制和弧度制互化,考查扇形面积的计算,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I);(II),或【解析】
(I)直接解不等式得解集;(II)对a分类讨论解不等式分析找到a满足的不等式,解不等式即得解.【详解】(I)当时,不等式为,不等式的解集为,所以不等式的解集为;(II)原不等式可化为,①当,即时,原不等式的解集为,不满足题意;②当,即时,,此时,所以;③当,即时,,所以只需,解得;综上所述,,或.【点睛】本题主要考查一元二次不等式的解法和解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、(1)见解析(2)【解析】
(1)连接交于点,则为的中点,由中位线的性质得出,再利用直线与平面平行的判定定理得出平面;(2)取的中点,连接,由中位线的性质得到,且,可得出平面,于此得出直线与平面所成的角为,然后在中计算即可.【详解】(1)连接,交于点,连接,由底面是菱形,知是的中点,又是的中点,∴.又∵平面,平面,∴平面;(2)取中点,连接,∵分别为的中点,∴,∵平面,∴平面,∴直线与平面所成角为,∵,,∴.【点睛】本题考查直线与平面平行的判定,考查直线与平面所成角的计算,在计算直线与平面所成角时,要注意过点作平面的垂线,构造出直线与平面所成的角,再选择合适的直角三角形求解,考查逻辑推理能力与计算能力,属于中等题.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)将代入得到关于的不等式,结合一元二次方程解一元二次不等式可求得集合;(Ⅱ)解集为即不等式恒成立,求解时结合与之对应的二次函数考虑可得到需满足的条件解不等式求的取值范围.【详解】(Ⅰ)当时,原不等式为:解方程得.(Ⅱ)由,即不等式的解集为R,则.20、(1);(2)【解析】试题分析:(1)根据已知数列为等差数列,结合数列的性质可知:前3项和,所以,又因为,所以公差,再根据等差数列通项公式,可以求得.本问考查等差数列的通项公式及等差数列的性质,属于对基础知识的考查,为容易题,要求学生必须掌握.(2)由于为等差数列,所以可以根据重要结论得知:数列为等比数列,可以根据等比数列的定义进行证明,即,符合等比数列定义,因此数列是等比数列,首项为,公比为2,所以问题转化为求以4为首项,2为公比的等比数列的前n项和,根据公式有.本问考查等比数列定义及前n项和公式.属于对基础知识的考查.试题解析:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 互联网公司实习生协议
- 欧式酒店罗马柱施工合同
- 照明工程人工费施工合同
- 会计实习生聘用合同
- 企业社会责任绩效
- 糖尿病的健康管理方案设计
- 工程项目合同质量管理情况记录
- 电子产品测试顾问协议
- 工程施工转让合同协议
- 2022年大学工程力学专业大学物理下册期中考试试题B卷-附解析
- 基于s7-1200系列PLC自动化生产线设计
- 工程施工阶段全过程造价控制与管理工作方案 精品
- 移动室内信号覆盖系统介绍演示文稿
- DB15T 389-2021内蒙古自治区造林技术规程
- 一年级上册数学课件 《认识11~20各数》(第1课时) 苏教版 (共19张PPT)
- 标准采购清单
- 阿基米德原理说课市公开课金奖市赛课一等奖课件
- 医疗质量安全核心制度要点解读课件
- 屋脊检验批质量验收记录表
- MODS护理培训课件
- 四年级上册语文老师家长会课件
评论
0/150
提交评论