版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等差数列的公差为2,前项和为,且,则的值为A.11 B.12 C.13 D.142.已知角的终边经过点(3,-4),则的值为()A. B. C. D.3.已知函数的部分图象如图,则的值为()A. B. C. D.4.以为圆心,且与两条直线,都相切的圆的标准方程为()A. B.C. D.5.石臼是人类以各种石材制造的,用以砸、捣、研磨药材、食品等的生产工具,是由长方体挖去半球所得几何体,若某石臼的三视图如图所示(单位:dm),则其表面积(单位:dm2)为()A.132+8π B.168+4π C.132+12π D.168+16π6.在非直角中,“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要7.已知函数的定义域为,当时,,且对任意的实数,等式恒成立,若数列满足,且,则的值为()A.4037 B.4038 C.4027 D.40288.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为()(参考数据:)A.48 B.36 C.24 D.129.《趣味数学·屠夫列传》中有如下问题:“戴氏善屠,日益功倍。初日屠五两,今三十日屠讫,问共屠几何?”其意思为:“有一个姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5两肉,共屠了30天,问一共屠了多少两肉?”()A. B. C. D.10.在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1∶3,则锥体被截面所分成的两部分的体积之比为()A.1∶ B.1∶9 C.1∶ D.1∶二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在水平放置的边长为1的正方形中随机撤1000粒豆子,有400粒落到心形阴影部分上,据此估计心形阴影部分的面积为_________.12.已知在中,角A,B,C的对边分别为a,b,c,,,的面积等于,则外接圆的面积为______.13.已知与的夹角为求=_____.14.若为幂函数,则满足的的值为________.15.设满足约束条件若目标函数的最大值为,则的最小值为_________.16.执行如图所示的程序框图,则输出的S的值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知二次函数满足以下要求:①函数的值域为;②对恒成立。求:(1)求函数的解析式;(2)设,求时的值域。18.如图,已知平面是正三角形,.(1)求证:平面平面;(2)求二面角的正切值.19.某高中为了选拔学生参加“全国高中数学联赛”,先在本校进行初赛(满分150分),随机抽取100名学生的成绩作为样本,并根据他们的初赛成绩得到如图所示的频率分布直方图.(1)求频率分布直方图中a的值;(2)根据频率分布直方图,估计这次初赛成绩的平均数、中位数、众数.20.已知圆关于直线对称,半径为,且圆心在第一象限.(Ⅰ)求圆的方程;(Ⅱ)若直线与圆相交于不同两点、,且,求实数的值.21.如图所示,在梯形中,∥,⊥,,⊥平面,⊥.(1)证明:⊥平面;(2)若,求点到平面的距离.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
利用等差数列通项公式及前n项和公式,即可得到结果.【详解】∵等差数列的公差为2,且,∴∴∴.故选:C【点睛】本题考查了等差数列的通项公式及前n项和公式,考查计算能力,属于基础题.2、A【解析】
先求出的值,即得解.【详解】由题得,,所以.故选A【点睛】本题主要考查三角函数的坐标定义,意在考查学生对该知识的理解掌握水平,属于基础题.3、B【解析】
根据函数的部分图象求出、、和的值,写出的解析式,再计算的值.【详解】根据函数,,的部分图象知,,,,解得;由五点法画图知,,解得;,.故选.【点睛】本题主要考查利用三角函数的部分图象求函数解析式以及利用两角和的正弦公式求三角函数的值.4、C【解析】
由题意有,再求解即可.【详解】解:设圆的半径为,则,则,即圆的标准方程为,故选:C.【点睛】本题考查了点到直线的距离公式,重点考查了运算能力,属基础题.5、B【解析】
利用三视图的直观图,画出几何体的直观图,然后求解表面积即可.【详解】几何体的直观图如图:几何体的表面积为:6×6×2+4×6×4﹣4π+2π×22=168+4π.故选:B.【点评】本题考查三视图及求解几何体的表面积,判断几何体的形状是解题的关键.6、C【解析】
由得出,利用切化弦的思想得出其等价条件,再利用充分必要性判断出两条件之间的关系.【详解】若,则,易知,,,,,,,,,.因此,“”是“”的充要条件,故选C.【点睛】本题考查充分必要性的判断,同时也考查了切化弦思想、两角和差的正弦公式的应用,在讨论三角函数值符号时,要充分考虑角的取值范围,考查分析问题和解决问题的能力,属于中等题.7、A【解析】
由,对任意的实数,等式恒成立,且,得到an+1=an+2,由等差数列的定义求得结果.【详解】∵,∴f(an+1)f(﹣2﹣an)=1,∵f(x)•f(y)=f(x+y)恒成立,∴令x=﹣1,y=0,则f(﹣1)•f(0)=f(﹣1),∵当x<0时,f(x)>1,∴f(﹣1)≠0,则f(0)=1,则f(an+1)f(﹣2﹣an)=1,等价为f(an+1)f(﹣2﹣an)=f(0),即f(an+1﹣2﹣an)=f(0),则an+1﹣2﹣an=0,∴an+1﹣an=2.∴数列{an}是以1为首项,以2为公差的等差数列,首项a1=f(0)=1,∴an=1+2(n﹣1)=2n﹣1,∴=2×2019﹣1=4037.故选:A【点睛】本题主要考查数列与函数的综合运用,根据抽象函数的关系结合等差数列的通项公式建立方程是解决本题的关键,属于中档题.8、C【解析】
由开始,按照框图,依次求出s,进行判断。【详解】,故选C.【点睛】框图问题,依据框图结构,依次准确求出数值,进行判断,是解题关键。9、D【解析】
根据题意,得到该屠户每天屠的肉成等比数列,记首项为,公比为,前项和为,由题中熟记,以及等比数列的求和公式,即可得出结果.【详解】由题意,该屠户每天屠的肉成等比数列,记首项为,公比为,前项和为,所以,,因此.故选:D【点睛】本题主要考查等比数列的应用,熟记等比数列的求和公式即可,属于基础题型.10、D【解析】解:因为在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1∶3,那么分为的两个锥体的体积比为1:,因此锥体被截面所分成的两部分的体积之比为.1∶二、填空题:本大题共6小题,每小题5分,共30分。11、0.4【解析】
根据几何概型的计算,反求阴影部分的面积即可.【详解】设阴影部分的面积为,根据几何概型的概率计算公式:,解得.故答案为:.【点睛】本题考查几何概型的概率计算公式,属基础题.12、4π【解析】
利用三角形面积公式求解,再利用余弦定理求得,进而得到外接圆半径,再求面积即可.【详解】由,解得..解得.,解得.∴△ABC外接圆的面积为4π.故答案为:4π.【点睛】本题主要考查了解三角形中正余弦与面积公式的运用,属于基础题型.13、【解析】
由题意可得:,结合向量的运算法则和向量模的计算公式可得的值.【详解】由题意可得:,则:.【点睛】本题主要考查向量模的求解,向量的运算法则等知识,意在考查学生的转化能力和计算求解能力.14、【解析】
根据幂函数定义知,又,由二倍角公式即可求解.【详解】因为为幂函数,所以,即,因为,所以,即,因为,所以,.故填.【点睛】本题主要考查了幂函数的定义,正弦的二倍角公式,属于中档题.15、【解析】
试题分析:试题分析:由得,平移直线由图象可知,当过时目标函数的最大值为,即,则,当且仅当,即时,取等号,故的最小值为.考点:1、利用可行域求线性目标函数的最值;2、利用基本不等式求最值.【方法点晴】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度,此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.16、4【解析】
模拟程序运行,观察变量值的变化,寻找到规律周期性,确定输出结果.【详解】第1次循环:,;第2次循环:,;第3次循环:,;第4次循环:,;…;S关于i以4为周期,最后跳出循环时,此时.故答案为:4.【点睛】本题考查程序框图,考查循环结构.解题关键是由程序确定变量变化的规律:周期性.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)将写成顶点式,然后根据最小值和对称轴进行分析;(2)先将表示出来,然后利用换元法以及对勾函数的单调性求解值域.【详解】解:(1)∵又∵∴对称轴为∵值域为∴且∴,,则函数(2)∵∵∴令,则∴∵∴,则所求值域为【点睛】对于形如的函数,其单调增区间是:和,单调减区间是:和.18、(1)证明见解析;(2).【解析】
(1)取的中点的中点,证明,由根据线面垂直判定定理可得,可得平面,结合面面垂直的判定定理,可得平面平面;
(2)过作,连接BM,可以得到为二面角的平面角,解三角形即可求出二面角的正切值.【详解】解:(1)取BE的中点F.
AE的中点G,连接GD,CF∴,GF∥AB又∵,CD∥AB∴CD∥GF,CD=GF,∴CFGD是平行四边形,∴CF∥GD,又∵CF⊥BF,CF⊥AB∴CF⊥平面ABE∵CF∥DG∴DG⊥平面ABE,∵DG⊂平面ABE∴平面ABE⊥平面ADE;(2)∵AB=BE,∴AE⊥BG,∴BG⊥平面ADE,过G作GM⊥DE,连接BM,则BM⊥DE,则∠BMG为二面角A−DE−B的平面角,设AB=BC=2CD=2,则,在Rt△DCE中,CD=1,CE=2,∴,又,由DE⋅GM=DG⋅EG得,所以,故面角的正切值为:.【点睛】本题考查了面面垂直的判定定理及二面角的平面角的作法,重点考查了空间想象能力,属中档题.19、(1)(2)平均数、中位数、众数依次为80,81,80【解析】
(1)利用频率分布直方图的性质,列出方程,即可求解;(2)由频率分布直方图,结合平均数、中位数、众数的计算方法,即可求解.【详解】(1)由频率分布直方图的性质,可得,解得.(2)由频率分布直方图,结合平均数、中位数、众数的计算方法,可得平均数为:中位数为x,则,解得.根据众数的概念,可得此频率分布直方图的众数为:80,因此估计这次初赛成绩的平均数、中位数、众数依次为80,81,80.【点睛】本题主要考查了频率分布直方图的性质,平均数、中位数和众数的求解,其中解答中熟记频率分布直方图的相关知识是解答的关键,着重考查了推理与运算能力,属于基础题.20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由题得和,解方程即得圆的方程;(Ⅱ)取的中点,则,化简得,即得m的值.【详解】(Ⅰ)由,得圆的圆心为,圆关于直线对称,①.圆的半径为,②又圆心在第一象限,,,由①②解得,,故圆的方程为.(Ⅱ)取的中点,则,,,即,又,解得.【点睛】本题主要考查圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 船用桁项目运营指导方案
- 利用可再生资源生产电能行业营销策略方案
- 玩具棱镜项目营销计划书
- 侦探服务行业经营分析报告
- 药用薄荷醇项目运营指导方案
- 含药物的糖果产业链招商引资的调研报告
- 人寿保险承保行业市场调研分析报告
- 医用充气软垫产品供应链分析
- 化妆台梳妆台产业链招商引资的调研报告
- 市场调查的设计行业经营分析报告
- 《城市设计》2课件
- 教科版科学五年级上册《摆的快慢》学习任务单
- 三年级数学上册课件-8.1分数的初步认识 - 人教版(共15张PPT)
- 小学数学 青岛版 六年级上册 比的认识部优课件
- 中国古代舞蹈史
- 摩托罗拉328-338系列写频软件教程
- 中国华能集团公司风力发电设备选型技术导则
- 林地养鸡技术的课件
- 生活自理能力评价量表完整优秀版
- 应急供货方案及紧急供货措施
- 人工神经网络6HOPFIELD神经网络ppt课件
评论
0/150
提交评论