版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为,则第八个单音的频率为()A. B. C. D.2.设等比数列的前项和为,若,则()A. B. C. D.3.过点且与直线垂直的直线方程是.A. B. C. D.4.在直三棱柱(侧棱垂直于底面)中,若,,,则其外接球的表面积为()A. B. C. D.5.在复平面内,复数对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限6.一个几何体的三视图分别是一个正方形,一个矩形,一个半圆,尺寸大小如图所示,则该几何体的体积是()A. B. C. D.7.已知扇形的半径为,面积为,则这个扇形圆心角的弧度数为()A. B. C.2 D.48.在中,分别为角的对边),则的形状是()A.直角三角形 B.等腰三角形或直角三角形C.等腰直角三角形 D.正三角形9.为了得到函数的图象,只需将函数图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度10.函数的部分图像如图所示,如果,且,则等于()A. B. C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列中,,,则数列通项___________12.如图,直三棱柱中,,,,外接球的球心为О,点E是侧棱上的一个动点.有下列判断:①直线AC与直线是异面直线;②一定不垂直;③三棱锥的体积为定值;④的最小值为⑤平面与平面所成角为其中正确的序号为_______13.已知无穷等比数列的首项为,公比为,则其各项的和为__________.14.在锐角△中,角所对应的边分别为,若,则角等于________.15.已知等比数列的公比为,它的前项积为,且满足,,,给出以下四个命题:①;②;③为的最大值;④使成立的最大的正整数为4031;则其中正确命题的序号为________16.给出以下四个结论:①过点,在两轴上的截距相等的直线方程是;②若是等差数列的前n项和,则;③在中,若,则是等腰三角形;④已知,,且,则的最大值是2.其中正确的结论是________(写出所有正确结论的番号).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角所对的边分别为,且.(1)求;(2)若,求的周长.18.设二次函数f(x)=ax2+bx.(1)若1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围;(2)当b=1时,若对任意x∈[0,1],-1≤f(x)≤1恒成立,求实数a的取值范围.19.已知函数.(1)求的最小正周期及单调递减区间;(2)若,且,求的值.20.已知函数.(1)求函数的单调递增区间;(2)当时,求函数的最大值和最小值.21.已知时不等式恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据等比数列通项公式,求得第八个单音的频率.【详解】根据等比数列通项公式可知第八个单音的频率为.故选:B.【点睛】本小题主要考查等比数列的通项公式,考查中国古代数学文化,属于基础题.2、C【解析】
根据等比数列性质:成等比数列,计算得到,,,计算得到答案.【详解】根据等比数列性质:成等比数列,设则,;故选:C【点睛】本题考查了数列的前N项和,利用性质成等比数列可以简化运算,是解题的关键.3、A【解析】
根据与已知直线垂直的直线系方程可假设直线为,代入点解得直线方程.【详解】设与直线垂直的直线为:代入可得:,解得:所求直线方程为:,即本题正确选项:【点睛】本题考查利用两条直线的垂直关系求解直线方程的问题,属于基础题.4、A【解析】
根据题意,将直三棱柱扩充为长方体,其体对角线为其外接球的直径,可得半径,即可求出外接球的表面积.【详解】∵,,∠ABC=90∘,∴将直三棱柱扩充为长、宽、高为2、2、3的长方体,其体对角线为其外接球的直径,长度为,∴其外接球的半径为,表面积为=17π.故选:A.【点睛】本题考查几何体外接球,通常将几何体进行割补成长方体,几何体外接球等同于长方体外接球,利用长方体外接球直径等于体对角线长求出半径,再求出球的体积和表面积即可,属于简单题.5、D【解析】
利用复数的运算法则、几何意义即可得出.【详解】在复平面内,复数==1﹣i对应的点(1,﹣1)位于第四象限.故选D.【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.6、C【解析】
由给定的几何体的三视图得到该几何体表示一个底面半径为1,母线长为2的半圆柱,结合圆柱的体积公式,即可求解.【详解】由题意,根据给定的几何体的三视图可得:该几何体表示一个底面半径为1,母线长为2的半圆柱,所以该半圆柱的体积为.故选:C.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.7、D【解析】
利用扇形面积,结合题中数据,建立关于圆心角的弧度数的方程,即可解得.【详解】解:设扇形圆心角的弧度数为,因为扇形所在圆的半径为,且该扇形的面积为,则扇形的面积为,解得:.故选:D.【点睛】本题在已知扇形面积和半径的情况下,求扇形圆心角的弧度数,着重考查了弧度制的定义和扇形面积公式等知识,属于基础题.8、A【解析】
根据正弦定理得到,化简得到,得到,得到答案.【详解】,则,即,即,,故,.故选:.【点睛】本题考查了正弦定理判断三角形形状,意在考查学生的计算能力和转化能力.9、C【解析】
利用诱导公式,的图象变换规律,得出结论.【详解】为了得到函数的图象,
只需将函数图象上所有的点向左平移个单位长度,
故选C.10、D【解析】
试题分析:观察图象可知,其在的对称轴为,由已知,选.考点:正弦型函数的图象和性质二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分析:在已知递推式两边同除以,可得新数列是等差数列,从而由等差数列通项公式求得,再得.详解:∵,∴两边除以得,,即,∵,∴,∴是以为首项,以为公差的等差数列,∴,∴.故答案为.点睛:在求数列公式中,除直接应用等差数列和等比数列的通项公式外,还有一种常用方法:对递推式化简变形,可构造出新数列为等差数列或等比数列,再由等差(比)数列的通项公式求出结论.这是一种转化与化归思想,必须掌握.12、①③④⑤【解析】
由异面直线的概念判断①;利用线面垂直的判定与性质判断②;找出球心,由棱锥底面积与高为定值判断③;设,列出关于的函数关系式,结合其几何意义,求出最小值判断④;由面面成角的定义判断⑤【详解】对于①,因为直线经过平面内的点,而直线在平面内,且不过点,所以直线与直线是异面直线,故①正确;对于②,当点所在的位置满足时,又,,平面,所以平面,又平面,所以,故②错误;对于③,由题意知,直三棱柱的外接球的球心是与的交点,则的面积为定值,由平面,所以点到平面的距离为定值,所以三棱锥的体积为定值,故③正确;对于④,设,则,所以,由其几何意义,即直角坐标平面内动点与两定点,距离和的最小值知,其最小值为,故④正确;对于⑤,由直棱柱可知,,,则即为平面与平面所成角,因为,,所以,故⑤正确;综上,正确的有①③④⑤,故答案为:①③④⑤【点睛】本题考查异面直线的判定,考查面面成角,考查线线垂直的判定,考查转化思想13、【解析】
根据无穷等比数列求和公式求出等比数列的各项和.【详解】由题意可知,等比数列的各项和为,故答案为:.【点睛】本题考查等比数列各项和的求解,解题的关键就是利用无穷等比数列求和公式进行计算,考查计算能力,属于基础题.14、【解析】试题分析:利用正弦定理化简,得,因为,所以,因为为锐角,所以.考点:正弦定理的应用.【方法点晴】本题主要考查了正弦定理的应用、以及特殊角的三角函数值问题,其中解答中涉及到解三角形中的边角互化,转化为三角函数求值的应用,解答中熟练掌握正弦定理的变形,完成条件的边角互化是解答的关键,注重考查了分析问题和解答问题的能力,同时注意条件中锐角三角形,属于中档试题.15、②③【解析】
利用等比数列的性质,可得,得出,进而判断②③④,即可得到答案.【详解】①中,由等比数列的公比为,且满足,,,可得,所以,且所以是错误的;②中,由等比数列的性质,可得,所以是正确的;③中,由,且,,所以前项之积的最大值为,所以是正确的;④中,,所以正确.综上可得,正确命题的序号为②③.故答案为:②③.【点睛】本题主要考查了等比数列的性质的应用,其中解答中熟记等比数列的性质,合理推算是解答的关键,着重考查了推理与运算能力,属于中档试题.16、②④【解析】
①中满足题意的直线还有,②中根据等差数列前项和的特点,得到,③中根据同角三角函数关系进行化简计算,从而进行判断,④中根据基本不等式进行判断.【详解】①中过点,在两轴上的截距相等的直线还可以过原点,即两轴上的截距都为,即直线,所以错误;②中是等差数列的前n项和,根据等差数列前项和的特点,,是一个不含常数项的二次式,从而得到,即,所以正确;③中在中,若,则可得,所以可得或,所以可得或,从而得到为直角三角形或等腰三角形,所以错误;④中因为,,且,由基本不等式,得到,所以,当且仅当,即时,等号成立.所以,即的最大值是,所以正确.故答案为:②④【点睛】本题考查截距相等的直线的特点,等差数列前项和的特点,判断三角形形状,基本不等式求积的最大值,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
分析:(1)利用正弦定理,求得,即可求出A,根据已知条件算出,再由大边对大角,即可求出C;(2)易得,根据两角和正弦公式求出,再由正弦定理求出和,即可得到答案.详解:解:(1)由正弦定理得,又,所以,从而,因为,所以.又因为,,所以.(2)由(1)得由正弦定理得,可得,.所以的周长为.点睛:本题主要考查正弦定理在解三角形中的应用.正弦定理是解三角形的有力工具,其常见用法有以下四种:(1)已知两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)已知两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.18、(1)5≤f(-2)≤10;(2)[-2,0).【解析】
(1)用和表示,再根据不等式的性质求得.(2)对进行参变分离,根据和求得.【详解】解(1)方法一⇒∵f(-2)=4a-2b=3f(-1)+f(1),且1≤f(-1)≤2,2≤f(1)≤4,∴5≤f(-2)≤10.方法二设f(-2)=mf(-1)+nf(1),即4a-2b=m(a-b)+n(a+b)=(m+n)a-(m-n)b,比较两边系数:⇒∴f(-2)=3f(-1)+f(1),下同方法一.(2)当x∈[0,1]时,-1≤f(x)≤1,即-1≤ax2+x≤1,即当x∈[0,1]时,ax2+x+1≥0且ax2+x-1≤0恒成立;当x=0时,显然,ax2+x+1≥0且ax2+x-1≤0均成立;当x∈(0,1]时,若ax2+x+1≥0恒成立,则a≥--=-(+)2+,而-(+)2+在x∈(0,1]上的最大值为-2,∴a≥-2;当x∈(0,1]时,ax2+x-1≤0恒成立,则a≤-=(-)2-,而(-)2-在x∈(0,1]上的最小值为0,∴a≤0,∴-2≤a≤0,而a≠0,因此所求a的取值范围为[-2,0).【点睛】本题考查不等式的性质和参变分离的恒成立问题,属于难度题.19、(1)最小正周期为,单调递减区间为(2).【解析】
(1)利用二倍角降幂公式和辅助角公式将函数的解析式化为,利用周期公式可得出函数的最小正周期,然后解不等式可得出函数的单调递减区间;(2)由可得出角的值,再利用两角和的正切公式可计算出的值.【详解】(1).函数的最小正周期为,令,解得.所以,函数的单调递减区间为;(2),即,,.,故,因此.【点睛】本题考查三角函数基本性质,考查两角和的正切公式求值,解题时要利用三角恒等变换思想将三角函数的解析式化简,利用正弦、余弦函数的性质求解,考查运算求解能力,属于中等题.20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全评价课程设计学校
- 幼儿编织项目课程设计
- 怎么做赠品课程设计
- 广州火车站课程设计
- 应急处突课程设计
- 幼儿园保姆教学课程设计
- 多机串行通信课程设计
- 半波整流课程设计
- 幼儿平衡车训练课程设计
- 小班画画线条课程设计
- MOOC 警察礼仪-江苏警官学院 中国大学慕课答案
- 三基考试题库与答案
- 2024年广东省2024届高三二模英语试卷(含标准答案)
- 全飞秒激光近视手术
- 2024年制鞋工专业知识考试(重点)题库(含答案)
- 2023-2024学年广州大附属中学中考一模物理试题含解析
- 绿化养护工作日记录表
- 2024美的在线测评题库答案
- 2024版高考数学二轮复习:解析几何问题的方法技巧
- 舆情监测服务方案
- 北京市海淀区2023-2024学年八年级上学期期末英语试卷
评论
0/150
提交评论