版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,集合,则()A. B. C. D.2.若,且,恒成立,则实数的取值范围是()A. B.C. D.3.过点,且圆心在直线上的圆的方程是()A. B.C. D.4.已知与均为单位向量,它们的夹角为,那么等于()A. B. C. D.45.在中,,则这个三角形的形状为()A.锐角三角形 B.钝角三角形 C.直角三角形 D.等腰三角形6.已知,则的值为()A. B.1 C. D.7.在三棱锥中,面,则三棱锥的外接球表面积是()A. B. C. D.8.若函数()的最大值与最小正周期相同,则下列说法正确的是()A.在上是增函数 B.图象关于直线对称C.图象关于点对称 D.当时,函数的值域为9.已知:,则()A. B. C. D.10.若直线y=x+b与曲线有公共点,则b的取值范围是A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知关于实数x,y的不等式组构成的平面区域为,若,使得恒成立,则实数m的最小值是______.12.函数的值域是______.13.把二进制数化为十进制数是:______.14.直线和将单位圆分成长度相等的四段弧,则________.15.函数的反函数是______.16.已知,且关于的方程有实数根,则与的夹角的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为的矩形区域(如图所示),按规划要求:在矩形内的四周安排宽的绿化,绿化造价为200元/,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/.设矩形的长为.(1)设总造价(元)表示为长度的函数;(2)当取何值时,总造价最低,并求出最低总造价.18.正四棱锥S-ABCD的底面边长为2,侧棱长为x.(1)求出其表面积S(x)和体积V(x);(2)设,求出函数的定义域,并判断其单调性(无需证明).19.本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知数列满足.(1)若,求的取值范围;(2)若是公比为等比数列,,求的取值范围;(3)若成等差数列,且,求正整数的最大值,以及取最大值时相应数列的公差.20.已知函数.(Ⅰ)求的最小正周期;(Ⅱ)若在区间上的最大值为,求的最小值.21.设两个非零向量,不共线,如果,,.(1)求证:、、共线;(2)试确定实数,使和共线.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
先化简集合,再利用交集运算法则求.【详解】,,,故选:D.【点睛】本题考查集合的运算,属于基础题.2、A【解析】
将代数式与相乘,展开式利用基本不等式求出的最小值,将问题转化为解不等式,解出即可.【详解】由基本不等式得,当且仅当,即当时,等号成立,所以,的最小值为.由题意可得,即,解得.因此,实数的取值范围是,故选A.【点睛】本题考查基本不等式的应用,考查不等式恒成立问题以及一元二次不等式的解法,对于不等式恒成立问题,常转化为最值来处理,考查计算能力,属于中等题.3、C【解析】
直接根据所给信息,利用排除法解题。【详解】本题作为选择题,可采用排除法,根据圆心在直线上,排除B、D,点在圆上,排除A故选C【点睛】本题考查利用排除法选出圆的标准方程,属于基础题。4、A【解析】本题主要考查的是向量的求模公式.由条件可知==,所以应选A.5、B【解析】解:6、B【解析】
化为齐次分式,分子分母同除以,化弦为切,即可求解.【详解】.故选:B.【点睛】本题考查已知三角函数值求值,通过齐次分式化弦为切,属于基础题.7、D【解析】
首先计算BD长为2,判断三角形BCD为直角三角形,将三棱锥还原为长方体,根据体对角线等于直径,计算得到答案.【详解】三棱锥中,面中:在中:即ABCD四点都在对应长方体上:体对角线为AD答案选D【点睛】本题考查了三棱锥的外接球表面积,将三棱锥放在对应的长方体里面是解题的关键.8、A【解析】
先由函数的周期可得,再结合三角函数的性质及三角函数值域的求法逐一判断即可得解.【详解】解:由函数()的最大值与最小正周期相同,所以,即,即,对于选项A,令,解得:,即函数的增区间为,当时,函数在为增函数,即A正确,对于选项B,令,解得,即函数的对称轴方程为:,又无解,则B错误,对于选项C,令,解得,即函数的对称中心为:,又无解,则C错误,对于选项D,,则,即函数的值域为,即D错误,综上可得说法正确的是选项A,故选:A.【点睛】本题考查了三角函数的性质,重点考查了三角函数值域的求法,属中档题.9、A【解析】
观察已知角与待求的角之间的特殊关系,运用余弦的二倍角公式和诱导公式求解.【详解】令,则,所以,所以,故选A.【点睛】本题关键在于观察出已知角与待求的角之间的特殊关系,属于中档题.10、C【解析】
试题分析:如图所示:曲线即(x-2)2+(y-3)2=4(-1≤y≤3),表示以A(2,3)为圆心,以2为半径的一个半圆,直线与圆相切时,圆心到直线y=x+b的距离等于半径2,可得=2,∴b=1+2,b=1-2当直线过点(4,3)时,直线与曲线有两个公共点,此时b=-1结合图象可得≤b≤3故答案为C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由,使得恒成立可知,只需求出的最大值即可,再由表示平面区域内的点与定点距离的平方,因此结合平面区域即可求出结果.【详解】作出约束条件所表示的可行域如下:由,使得恒成立可知,只需求出的最大值即可;令目标函数,则目标函数表示平面区域内的点与定点距离的平方,由图像易知,点到的距离最大.由得,所以.因此,即的最小值为37.故答案为37【点睛】本题主要考查简单的线性规划问题,只需分析清楚目标函数的几何意义,即可结合可行域来求解,属于常考题型.12、【解析】
将函数化为的形式,再计算值域。【详解】因为所以【点睛】本题考查三角函数的值域,属于基础题。13、51【解析】110011(2)14、0【解析】
将单位圆分成长度相等的四段弧,每段弧对应的圆周角为,计算得到答案.【详解】如图所示:将单位圆分成长度相等的四段弧,每段弧对应的圆周角为或故答案为0【点睛】本题考查了直线和圆相交问题,判断每段弧对应的圆周角为是解题的关键.15、,【解析】
求出函数的值域作为其反函数的定义域,再由求出其反函数的解析式,综合可得出答案.【详解】,则,由可得,,因此,函数的反函数是,.故答案为:,.【点睛】本题考查反三角函数的求解,解题时注意求出原函数的值域作为其反函数的定义域,考查计算能力,属于中等题.16、【解析】
先由得出,再根据即可求出与的夹角的取值范围.【详解】因为关于的方程有实数根,所以,即,设与的夹角为,所以,因为,所以,即与的夹角的取值范围是【点睛】本题主要考查平面向量的夹角公式的应用等,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)当时,总造价最低为元【解析】
(1)根据题意得矩形的长为,则矩形的宽为,中间区域的长为,宽为列出函数即可.(2)根据(1)的结果利用基本不等式即可.【详解】(1)由矩形的长为,则矩形的宽为,则中间区域的长为,宽为,则定义域为则整理得,(2)当且仅当时取等号,即所以当时,总造价最低为元【点睛】本题主要考查了函数的表示方法,以及基本不等式的应用.在利用基本不等式时保证一正二定三相等,属于中等题.18、(1),;(2)x>,是减函数.【解析】
(1)画出图形,分别求出四棱锥的高,及侧面的高的表达式,即可求出表面积与体积的表达式;(2)结合表达式,可求出的范围,即定义域,然后判断其为减函数.【详解】(1)过点作平面的垂线,垂足为,取的中点,连结,因为为正四棱锥,所以,,,,所以四棱锥的表面积为,体积.(2),解得,是减函数.【点睛】本题考查了四棱锥的结构特征,考查了表面积与体积的计算,考查了学生的空间想象能力与计算能力,属于中档题.19、(1);(2);(3)的最大值为1999,此时公差为.【解析】
(1)依题意:,又将已知代入求出x的范围;(2)先求出通项:,由求出,对q分类讨论求出Sn分别代入不等式Sn≤Sn+1≤3Sn,得到关于q的不等式组,解不等式组求出q的范围.(3)依题意得到关于k的不等式,得出k的最大值,并得出k取最大值时a1,a2,…ak的公差.【详解】(1)依题意:,∴;又∴3≤x≤27,综上可得:3≤x≤6(2)由已知得,,,∴,当q=1时,Sn=n,Sn≤Sn+1≤3Sn,即,成立.当1<q≤3时,,Sn≤Sn+1≤3Sn,即,∴不等式∵q>1,故3qn+1﹣qn﹣2=qn(3q﹣1)﹣2>2qn﹣2>0恒成立,而对于不等式qn+1﹣3qn+2≤0,令n=1,得q2﹣3q+2≤0,解得1≤q≤2,又当1≤q≤2,q﹣3<0,∴qn+1﹣3qn+2=qn(q﹣3)+2≤q(q﹣3)+2=(q﹣1)(q﹣2)≤0成立,∴1<q≤2,当时,,Sn≤Sn+1≤3Sn,即,∴此不等式即,3q﹣1>0,q﹣3<0,3qn+1﹣qn﹣2=qn(3q﹣1)﹣2<2qn﹣2<0,qn+1﹣3qn+2=qn(q﹣3)+2≥q(q﹣3)+2=(q﹣1)(q﹣2)>0∴时,不等式恒成立,∴q的取值范围为:.(3)设a1,a2,…ak的公差为d.由,且a1=1,得即当n=1时,d≤2;当n=2,3,…,k﹣1时,由,得d,所以d,所以1000=k,即k2﹣2000k+1000≤0,得k≤1999所以k的最大值为1999,k=1999时,a1,a2,…ak的公差为.【点睛】本题考查等比数列的通项公式及前n项和的求法;考查不等式组的解法;找好分类讨论的起点是解决本题的关键,属于一道难题.20、(Ⅰ);(Ⅱ).【解析】
(I)将化简整理成的形式,利用公式可求最小正周期;(II)根据,可求的范围,结合函数图象的性质,可得参数的取值范围.【详解】(Ⅰ),所以的最小正周期为.(Ⅱ)由(Ⅰ)知.因为,所以.要使得在上的最大值为,即在上的最大值为1.所以,即.所以的最小值为.点睛:本题主要考查三角函数的有关知识,解题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 土建建材采购合同范例
- 承包驾校食堂合同范例
- 广告废品加工合同范例
- 艺校劳动合同范例
- 货物检验合同范例
- 装修合同范例文档
- 大蒜购销合同范例
- 平台代驾入驻合同范例
- 员工铁床工厂订制合同范例
- 个人货车现金入股合同范例
- MOOC 警察礼仪-江苏警官学院 中国大学慕课答案
- 三基考试题库与答案
- 2024年广东省2024届高三二模英语试卷(含标准答案)
- 全飞秒激光近视手术
- 2024年制鞋工专业知识考试(重点)题库(含答案)
- 2023-2024学年广州大附属中学中考一模物理试题含解析
- 绿化养护工作日记录表
- 2024美的在线测评题库答案
- 2024版高考数学二轮复习:解析几何问题的方法技巧
- 舆情监测服务方案
- 北京市海淀区2023-2024学年八年级上学期期末英语试卷
评论
0/150
提交评论