初中数学-中考数学复习之解题模型大全课件_第1页
初中数学-中考数学复习之解题模型大全课件_第2页
初中数学-中考数学复习之解题模型大全课件_第3页
初中数学-中考数学复习之解题模型大全课件_第4页
初中数学-中考数学复习之解题模型大全课件_第5页
已阅读5页,还剩201页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初中数学演义作者李树茂数学立体通关教学法创始人数学中考考点全覆盖+初中数学解题模型大揭密目录总体结构,思路,理念及方法有理数及运算实数及运算整式及加减整式的乘除因式分解分式及分式方程一元一次方程二元一次方程组应用题题型汇总不等式及应用几何图形+立体图形三角形全等三角形三角形及证明勾股定理平移与旋转特殊的四边形一元二次方程图形的相似视图与投影位置与坐标函数及图象一次函数反比例函数解直角三角形二次函数动态问题破解口诀圆统计与概率立体通关教学法简介包头中考六道大题破解口诀初中数学通关口诀代数抓精髓;代入是关键。代数一般式;两得全搞定。算功过三关;解功四门槛。方程辨两类;函数识三型。函数三姐妹;勾股三用途。系数不为零;指数要相吻。非负三兄弟;蜕皮两魔鬼。统计要通关;两查走在前。几何要通透;精髓是特殊。四图加一表;数据整理好。重点特殊图;识图定性判。数据分析透;三差加三数。两图谈感情;特殊关系联。概率也不难;频率能估算。全等加相似;对称与旋转。列表和树型;搞清总和分。平移与投影;位似也要算。鱼池鱼几多;应用记概型。考点说举做;做题改变找。动点巧分类;最短牛喝水。条件挖隐含;分类不漏点。找准临界点;相似巧破题。思路技巧精;反思记模型。代数两特殊;首先特殊数。应用均同宗;关系是根本。数数拉关系;方不与函数。元量同回代;运算有六种。关系大小等;再加倍比分。每每有热点;负元巧应用。算功:有理数、无理数、代数式的三种计算功力。解功:指解一元一次方程、一元二次方程、二元一次方程组、不等式(组)的四种功力。勾股三用途:指勾股定理的计算;列方程;证明垂直的三项功能。戏说初中数学三国演义代数几何统概数与式方程与不等式函数及其图象图形基础、三角形及图形的全等变换多边形及四边形相似、视图、投影和解直角三角形圆统计与概率八仙过海难题突破——突破方向的确定三句话:基本图形→经验积累→模式识别九个字:改条件→变结论→找接口学数学首先必须掌握的基本功三种语言:自然语言;符号语言;图形语言。三类符号:运算符号;关系符号;推理符号。六种运算:加;减;乘;除;乘方;开方+锐角三角函数。两解一分:解方程;解不等式;分解因式。两句口诀:算功不过关;一切都枉然。解功不过关,高分是空谈。戏说数学之——代数分式方程(可化为一元一次方程)死数(实数)活数(含有字母的数)代数式(定义)有理式无理式整式分式单项式多项式特殊数数与数之间的特殊关系相等关系:等式及方程不等关系:不等式(组)全部关系:函数与图象整式方程一元(一次;二次)二元(一次方程组)按照数的性质为代数式分类代数式死数(实数)活数(含字母的数)永正数:非负数+正数非负数:平;绝;根永负数:-(非负数+正数)条件活数(川剧变脸)戏说数学之——几何基本图形(点、线、面、空)特殊图形(三、四、多、圆)特殊图形三角形性质(直角等腰)(平矩菱正)特殊图图与图之间的特殊关系全等关系相似关系变换关系定义四边形判定定义性质判定对称—兴致—平移—位似—投影—视图多边形与圆(正、圆)普通图形(丑)特殊图形(美)(整容)学习几何要过三关画图关:按照题意画图形。语言关:文字语言(自然语言)、图形语言、符号语言这三种语言的转换和翻译。推理关:证明,推理的能力和步骤。数学怎么学说(说得出)—举(会举例)—做(能做题)例:以有理数;绝对值;代数式;整式;分式;多项式的次数为例。

初中数学精髓几何:两个字概括——特殊:特殊图形;特殊关系(全等、相似)。代数:两个字概括——代入:字母的含义代入代数式、方程、不等式或者函数。几何三大方法:全等、相似、勾股定理。辅助线的认识对内分割对外补形压轴题大类:几何综合;代数综合;代几综合。中学数学常用到的五种思想,十六种方法五种解题思想:1.整体思想;2.化归思想;3.方程思想;4.数形结合思想;5.函数思想;文字语言转化为符号、图形语言的思想。十六种解题方法:1、配方法;2、因式分解法;3、换元法;4、判别式法与韦达定理;5、待定系数法;6、构造法;7、反证法;8、面积法;9、几何变换法(平移;旋转;对称;翻折);10、客观性题的解题方法(直接推演法;验证法;特殊元素法-取特值法;排除、筛选法;分析法);11、倒数法;12、割补法;3、拆项法;14、借来还去法15、因果对应法;16、恒等变形法------。压轴题基本模型相似存在掉包计;是否垂直化相似。直角存在还勾股;角若相等想弦切。线段最短牛喝水;三平交点定平四。等腰风水轮流转;两线合一也等腰。压轴题复习(学习)方法背题:把别人的方法背下来。做题:自己把题做出来。一定要自己做出来。压轴题必考点:一动二分——动点问题分类讨论重点章节知识结构演义根号中不能有开出去的因式(数)-根号中无有分母;分母中无根号---根号中不能有小数(变分数处理)-运算——加减:先化后算;乘除:先算后化。三个重要公式若x2=a则x=±√a(用来解方程)。(√a)2=a(a≥0)(√a2)2=IaI(需分类讨论).

特别注意公式2、3的区别:先开后平就自己;先平后开加绝对。IAI=a-b的相反数是b-a;a+b的相反数是-a-bA(A≥0)-A(A<0)数形结合判正负非负数总结定义:0和正数(没有负数的事!)形式:|A|;A2;√A。性质:和为零,每个加数必为零。与正数的和为正数。有最小值,最小值为零。与相反数、倒数、绝对值、数轴共同成为认识和数的五大基本概念。特别记忆非负三兄弟——|A|;B2;√C蜕皮两魔鬼——|A|;√B2科学记数法通关口诀万四亿八现原形;大正小负要记清。点动几位幂为几;有效数字不能混。模型解题拆项法。高斯算法。设参倍乘倒序相加法。等差数列梯形法。【典例1】——一种特殊的解题技巧。求1+2++22+23+---+22014可以这样做:令S=1+2+22+23+---+22014

两边同乘2得:

2S=2+22+23+24+---+22014+22015

因此:2S-S=22015-1,仿照以上推理,计算:

1+5+52+53+---+52014=()。等比数列(略)等差数列(略)斐波拉契数列:前两项的积等于第三项。阶差数列:相邻两数的差为:1、2、3、4、5---(依次大1)。隔位找规律。非线性规律:平方乘一个数再加一个数。(二次函数)其它规律找规律——标序号(注意每个数与序号的关系)探索规律一般方法:具体事例-合理联想-善于类比-总结规律-大胆猜想-得出结论-验证完成。一般步骤;观察-归纳-猜想-验证。一般技巧:相邻看,隔一看。等差、等比、倍数+几、平方+几、平方的倍数+几---按照数的性质为代数式分类代数式死数(实数)活数(含字母的数)永正数:非负数+正数非负数:平;绝;根永负数:-(非负数+正数)条件活数(川剧变脸)去括号的特殊应用注意:(a+b)与

–a-b互为相反数;(a-b)与b–a互为相反数。复习:绝对值的概念和化简。

IaI=掌握:Ia-bI和Ia+bI类的讨论与化简。确定“狗笼”里是什么狗(正数还是负数)。好狗(正能量)直接放出,恶狗(负能量)要带铁链。a(a≥0夏天热,出门不用加衣)-a(a<0冬天冷,出门加衣)【例5】如图是有理数a,b在数轴上的位置,化简Ia+bI-Ib-aI+Ia-1I+Ia+1I01-1-22ab整式的乘除知识点记忆口诀八个公式(幂六乘二)五个法则(三乘两除)一种计数(科学计数法表示较小的数)一个活用(公式正用逆用)五种思想(整体的思想;数形结合的思想;化归的思想;类比、推理、归纳的思想;方程的思想)一座桥梁(数与代数的桥梁:字母表示数)幂的运算法则性质同底数幂的乘法同底数幂的除法积的乘方商的乘方幂的乘方零指数幂负整数指数幂(三种算法)特别提升(a+b)2=a2+b2+2ab应用整体的思想,可以理解为三个数(画线三部分),三个数知二求一是这个公式的另外一种应用。(a-b)2=a2+b2-2ab应用整体的思想,可以理解为三个数(画线三部分),三个数知二求一是这个公式的另外一种应用。小结:两数和、两数的差、两数平方的和、两数的乘积,知二求二。可以让学生自己出题加深理解记忆。活用公式之总结a2-b2=(a+b)(a-b)a2+b2=(a+b)2-2ab=(a-b)2+2ab(a+b)2-(a-b)2=4ab(a+b)2+(a-b)2=2(a2+b2)X2+1/x2=(x+1/x)2-2=(x-1/x)2+2因式分解定义与乘法的关系工具性(约分;通分;解方程)方法:一提二套三十字四分组分式的乘除混合运算(含乘方)顺序:先计算乘方,再计算乘除。同级运算按照从左到右的顺序计算,有括号熏算括号除法运算统一为乘法运算。(见除先变乘)。运算结果要化为最简分式。分子分母按照某一字母降幂排列。分子分母遇到多项式一般要先分解因式,变为乘积的形式后约分。乘除法:确定符号的法则与分数乘法相同。分式的乘方:把分子分母各自乘方即可。分式的混合运算顺序:括号→乘方、开方→乘法、除法→加法、减法→最简结果。正确运用法则,灵活运用运算律。避免出错:一步一回头。一定顺序二开算,能简便的就简便;遇负不忘加括号,遇除一定先变乘;整式分母看作1,结果一定要最简。结果中的分母和分子可以是和差的形式也可以是乘积的形式,根据情况灵活掌握。代数式求值的思路把字母的取值直接代入。把条件化简或者改造。把所给的代数式化简或变形。同时改造条件和所给代数式。整体代入法。例题:典例5---特别提升分式方程的概念复习:整式方程(组):以元和次命名。分式方程:分母中含有未知数的方程叫之。方程分类方程有理方程无理方程其它方程整式方程分式方程只有整式方程才有次数分式方程的解法基本思路:分式方程整式方程步骤(一去二解三验四写):整理-去分母-整式方程解整式方程检验(必须的步骤)写结论验根的方法:把解整式方程所得到的解代入公分母中,如果使公分母为0,这个根为原方程的增根,若使公分母的值不为0,则这个根为原来方程的根。(去分母)分式方程的增根增根的意义:分式方程通过去分母变为整式方程,未知数的取值范围扩大,如果解整式方程得到的根恰巧是使原来的分式方程分母为0的值,则这个根显然不是原方程的根。这样的根叫做原方程的增根。解分式方程验根是必须的步骤。增根的产生并不是因为运算错误。⑴是整式方程的根⑵使公分母为0的未知数的值)利用增根的概念,确定方程中字母系数的值.3.增根特别提升—分式方程无解去分母后的整式方程无解去分母后的整式方程的解是原方程的增根

【典例2】已知关于x的分式方程A≤-1且a≠-2【典例3】已知关于x的方程-1或-5/3【典例4】若关于x的方程有增根,试求k的值。瑞星教育数学思维导图二者关系解方程注意■去分母时小心漏乘■去分母小心丢括号■去括号时注意负号■分数与等式性质混列方程解应用题■思路:试设元-回头看-找关系-列方程(别把未知数不当数)。■注意单位的统一和隐含的条件初中要学习的方程列方程解应用题思路:试设元-回头看-找关系-列方程。步骤:审-设-列-解-验-答。记住:未知数也是数,别把未知数不当数。方法清单:直接设元;间接设元;设辅助未知数(或把某个总量看作整体1);巧设比例份数为未知数(一份为x)——负元法(减元法)(看似多设一元,实则减一少一元);整体设元(求6位数,已知个位数字为7,则可设左边五位数为x,则10x+7为此六位数)。如何找等量关系抓关键词同一个量从不同角度描述利用公式抓不变量瑞星教育数学思维导图解的应用■解应用题思路:试设元-回头看-找关系-列方程(别把未知数不当数)有一个或者两个未知数的方程;三个方程有三个未知数盘点设未知数的五大技巧一.直接设元.二.间接试元.三.设辅助未知数(或整体1).四.设比例份数为未知数(负元法).五.整体设未知数.是交点横坐标(变量互求)互相利用函数利用方程你中有我既有联系我中有你又有区别方程与函数

关系示意图方程组方程①方程②一次函数函数①函数①直线①直线②方程组的解(x,y)

→→函数图象交点坐标(x,y)方程组的解(x,y)←←函数图象交点坐标(x,y)(x,y)函数图象的交点满足函数表达式满足对应方程组方程的解满足函数表达式是对应图象交点的坐标平面直角坐标系和图象是桥梁:图象既能代表方程也能代表函数!小结(理解)函数(图象)可以解方程(不等式)方程为函数提供计算、求值、分析服务。函数都可以看做方程;方程只有化做特定的形式后才能看做方程。函数和方程的共同祖先是代数式。函数全面研究和反应含有一个未知数的代数式的变化情况,与之相比:方程,不等式又都是函数的特例。方法清单一、直接设元二、间接设元三、设辅助未知数(或者整体1)四、设比例份数为未知数(1份)五、整体设元不等式三个定义不等式一元一次不等式一元一次不等式组三个概念不等式的解不等式的解集不等式的特解三个性质:加减;乘除正数;乘除负数。两种解法:一元一次不等式的解法;不等式组的解法。一种思想:数形结合的思想一个关系:与一次函数及方程的关系一元一次不等式与一个函数一元一次不等式与两个函数不等式与组与函数的自变量两个判断:有解;无解定参数。综合应用不等式不等式不等式的一个解不等式的解集不等式的性质一元一次不等式及解法不等式组的解法(含混合不等式)不等式的应用(无解有解定参数)不等式(组)、函数、与方程(组)。不等式解集总结补充提升不等式|x|>a和|x|<a的解:|x|>aa<0全体实数;a>则x>a或x<-a|x|<aa<0无解;a>则-a

<x<a数轴表示(几何意义):a>0-aa|x|<a|x|>a|x|>a正方体的表面展开图——十一种类型汇总

记忆口诀中四连,帽子任戴鞋任穿(1-4-1)中三连,歪带帽子鞋任穿(2-3-1)三二相连边对边(2-2-2)三三相连边对边(3-3)总面六个不能少,凹字田字不能有。复习整理三角形概念:边;角;顶点三角形的表示法(直角三角形的表示法)三角形角的关系(直角三角形两锐角的关系)三角形三边的关系三角形的分类三角形中的三种线段三角形的分类按角分按边分先定标准后分类。等边三角形是特殊的等腰锐角三角形:三个内角都是锐角的三角形直角三角形:有一个内角是直角的三角形钝角三角形:有一个内角是钝角的三角形不等边三角形:三边都不相等的三角形等腰三角形腰和底边不相等:两等一不等等边三角形:三边都相等的三角形三角形中的“三线”及性质高(垂心):由高产生的相似及等比与点积。中线(重心):1:2或者1/2与2/3的关系。角平分线(内心):两边的比=角平分线分对边所成的两线段的比。高中线角平分线自造公式角平分线交角的计算:

BD与CD是角平分线,则∠ADC=90°+—∠A如图:AD是角平分线,

AE是高,则:∠DAE=—(∠C-∠B)[大-小]ABCD12BACDE12●内角与邻角外角平分线的交角等于第三角的一半!技巧拓展:若D是△ABC的一条中线,则△ABD与△ACD的面积相等。拓展:△ABD与△ACD面积的比等于BD

与DC的比。中考综合题中常常是解决问题的突破点——高等,底之比等于面积比;底等,高之比等于面积比。ABCD等边三角形面积的求法复习整理全等图形全等三角形的概念及表示全等三角形的性质全等三角形的用途对应元素的确定复习整理证明三角形的全等知两边知两角知角边再找一边相等,用SSS再找夹角相等,用SAS再找夹边相等,用ASA再找对边相等,用AAS找条件向上两方向发展≌角相等线段等【创造条件证全等】八个渠道:公共边或公共角;同角的余补角;对顶角;内错角或同位角;等量加等量和相等;等量加等量差相等;等量的同倍同分量相等;全等最后一招:添加辅助线构造全等三角形。全等三角形的图形归纳起来有以下几种典型形式:⑴平移全等型

⑴平移全等型

⑵对称全等型

⑶旋转全等型

全等三角形的三类九种基本类型(4)翻折全等型注意共角与共边三角形。截长补段证明线段的和倍分问题全等三角形的图形归纳起来有以下几种典型形式:⑴平移全等型

⑴平移全等型

⑵对称全等型

⑶旋转全等型

全等三角形的三类九种基本类型(4)翻折全等型数学微博—求三角形面积技巧ABCEXYMNO1.三角形面积等于AE与MN乘积的一半(三线平行且都垂直于

MN或者X轴)!2.若知道三角形三边的坐标,可以用这种模式求三角形的面积.关键是求AE的长度,先求BC的关系式,再求E点的坐标,然后求AE的长度---特别提升一重要模型ABCDEFG△ABD与△BCE为等边三角形,则:△ABE≌△DBC;△BGC≌△BFE△BFG为等边三角形—两对全等三个等边!特别提升二ABCDEP任意△ABC,△ABD与△BCE为等边三角形。则:AE=DC,∠DPA=∠EPC=60°∠CPA=∠DPE=120°特别提示勾股定理的应用三边的长度:知二求一(开方式)。利用勾股定理列方程解决问题(平方式)。知道两条直角边求斜边上的高(等积法)。构造直角三角形通过上述方法解决问题。折叠问题解题思路设:设恰当的未知数。折叠中的某边。表:用含未知数的代数式表示未知的边。找:找一个直角三角形(三边可表或可求)列:用勾股定理的“平方式”列方程。解:解方程并检验。答:写出答案。特别拓展锐角三角形中两边平方的和大于第三边。钝角三角形中钝角的两边平方的和小于钝角的对边的平方。要会证明(做高证明)——勾股定理三情形:

a

b

c

ab

c

a

b

ca2+b2=c2a2+b2>c2a2+b2<c2特别记忆若过直角三角形两锐角顶点的中线长分别为m和n,则此直角三角形斜边的长为(如图所示):

直角三角形快速切换求边法(强化训练——熟练掌握)用比值法抓住已知准确判断快速求值1112345121351213√2√3√5√10用两边的长度或比值确定属于那种类型,用比值知一求二(其它边)勾股定理的应用直角三角形的判定:一角为直角;两锐角互余:两边平方和等于第三边平方。直角三角形的性质:锐角互余;两边平方的和等于第三边;斜边上的到等于两直角边的乘积除以斜边。方程的思想帮助解决问题;辅助线构造直角三角形;直接用平方的形式构建方程:若:a2=b2+c2,d2=e2+f2,a=d,则b2+c2=e2+f2

距离问题;航海问题;证明垂直;折叠问题;侧面展开问题;测量距离问题---。三个基本问题蚂蚁立体对角吃东西路最近——立体插杆怎么最长——梯子滑动问题——长方体蚂蚁对角爬吃东西求最短路程a、b、c为长宽高计算比较判断求之牢记:最大边平方与另外两边和的平方之和的算术平方根最短勾股定理产生的最长与最短问题最长问题:长方体对角点距离最长:长,宽,高平方和的算术平方根。圆柱体放置最长筷子:直径与高的平方和的算术平方根。最短线路:长方体对角觅食:线路三条,最短的为长宽高(中最大者的平方+另外两边和的平方)的算术平方根。圆的对角觅食:圆周长的一半与高的平方和的算术平方根。(圆柱中间觅食:公式中高按实际高度计算)长方体某顶点到对棱某点觅食:(长与宽和的平方+高的平方)的算术平方根。用线绕圈最短问题:(圆周长的平方+高除以间隔数的平方)的算术平方根,乘圈数。勾股定理的三大功能求边长(知二求一)——开方式。列方程(求未知数)——平方式。证直角(证明垂直)——平方式。本章重点培养的思想和方法方程的思想数型结合的思想等积的思想(求斜高)分类讨论的思想(知任两边求另外一边)折叠和展开的思路(图形折叠;蚂蚁走路)定理和逆定理的理解记忆和应用动点的思想(同一点出发,一向北一向南,一个速度为3,一个速度为4,几分钟后相距20?图形变换全等变换相似变换(形状不变大小变)图形的缩放(宝塔;酒盅---)对称旋转平移翻折形状大小都不变两次翻折=一次平移位似投影反射平移的概念图形变换:平移;旋转;对称;翻折;相似。定义:在平面内,把一个图形沿某一个方向移动一定的距离,这样的图形运动称为平移。确定平移的两要素:方向和距离。平移不改变图形的形状和大小,只改变图形的位置。平移前后的图形全等。相关概念:平移前后能相互重合的点、线段、角分别称为对应点、对应线段、对应角。对应点之间的连线(都平行)为平移的方向。平移是产生全等图形的一个途径。平移动的特征实质:图形上的每一个点都沿同一个方向移动了相同的距离。平移前后图形的形状、大小完全相同(全等)连接对应点的线段平行(或在同一条直线上)且相等。对应线段平行(或在同一条直线上)且相等。对应角相等。(沿某一边方向移动)重要的关键词:平行且相等。方向、距离。两种情形:方向与一边相同;方向不与任何一边相同。平移作图理论依据:平移的特征。(方向,距离!)步骤:一找(拐点);二连(一对已知的对应点);三定(距离、方向);四作(其它拐点的对应点);五连(按照原图顺序连接所有拐点的对应点)。作其它拐点的对应点:按照第二步中确定的方向和距离,作出其它拐点的对应点(平行、相等、同向)。平移作图法不唯一,在格纸上也可象例2那样利用格纸找平移的规律然后作图。(多次平移动)——坐标法。点平移——线段平移——图形平移的关系。旋转的概念定义:平面内,将一个图形绕一个定点按某一方向旋转一个角度,这样的图形运动称为旋转。这个定点称为旋转中心;运动的角称为旋转角。确定旋转的要素:一心;一角;一方向。旋转中心的位置:图内、图上、图外都可。对应元素:对应点、对应线段、对应角。旋转角:任意一对对应点与旋转中心连续所成的角是旋转脚(都相等)。本质:图上每个点都同时按照相同的方向绕旋转中心旋转了相同的角度。旋转的基本特征旋转不改变图形的形状和大小,只改变其位置。旋转前后两图形全等。基本特征:经旋转,图上每一等都绕旋转中心沿相同的方向旋转了相同的角度。对应点的排列次序相同。对应点到旋转中心的距离相等;任一对对应点与旋转中心的连线所成的角都等于旋转角。对应线段相等,对应角相等。——全等。注意:旋转的范围是在同一平面内。否则可能旋转为立体图形。旋转作图理论依据:旋转的特征。步骤:一定:定心、定方向、定旋转角。二找:找拐点,三转:每个拐点与旋转中心相连接,按照旋转方和旋转角绕旋转中心旋转,得到对应点。四连:按照原图的的次序连接这些对应点,得到所作的图形。按照:旋转点——旋转线段——旋转图形,分析、理解、消化、记忆。中心对称与中心对称图中心对称:把一个图形绕某一点旋转180度,它能够与另一个图形重合,那么,就说这两个图形关于这个点对称(中心对称)。中心对称图形:把一个图形绕某一点旋转180度,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形。这个点叫做它的对称中心。中心对称是旋转的特例,所以具有旋转的一切特征。不同的是旋转角固定为180度。中心对称:两个图;中心对称图形:一个图三角形的中位线定义:连接三角形两边中点的线段,叫做三角形的中位线。数量:任一三角形都有三条中位线,且这三条中位线组成一个“中位线三角形”。定理:三角形的中位线平行于第三边,且等于第三边的一半。(位置关系和长度关系)。两边中点中位线用途:证明平行或线段的倍、分、比关系。中位线三角形周长等于原三角形周长的一半。顺次连接任意四边形四边的中点构成一个平行四边形。位置:平行第三边长度:等于第三边的一半特别提升三角形的中位线截三角形所得的三角形的面积等于原三角形面积的1/4。三角形三边中点的连线所成的三角形的面积等于原三角形面积的1/4。三角形三边中点的连线把原三角形分为四个面积相等的小三角形。特别提升—三角形与平行四边形已知一点,过该点可以作无数个平行四边形。已知两点,过两点可以做无数个平行四边形。已知不共线的三点,过三点可以作三个平行四边形。且如图所示的小三角形的顶点是大三角形三边的中点,动点问题模型┓┓BBCAACDD■一垂两等变等腰:作AD⊥BC,若BD=DC,则△ABC为等腰三角形。即:AB=AC!■可以用来解决平行四边形变为菱形的问题!■一垂三等变等腰直角三角形:作AD⊥BC,若BD=DC=AD,则△ABC为等腰直角三角形。■可以用来解决平行四边形变为正方形的问题!数学模型已知不共线的三点的坐标为E(1,2)F(3,8)G(-5,6),是否存在一点M,使E、F、G、M为顶点组成一个平行四边形?如果存在,请求出M点的坐标。如果不存在,请说明理由。FEG如图所式模式:三平(三条过三角形顶点且分别平行对边的绿线)交三点,三点为所求。先求EFG组成的三角形三边的关系式,根据平行则斜率K相等得到三条平行线(绿线)的K值,再根据其穿过的顶点E、F、G的坐标求三条绿线的关系式。最后求绿线的三个交点坐标平行四边形菱形矩形正方形任意四边形梯形从边、角、对角线三方面说出它们之间的转化条件——(一角是直角且邻边相等)(对角线相等且垂直)试一试,自己补充完整:模型解题ABCDEF如图:矩形ABCD沿对角线BD对折,C点到了E点,则一对全等(小直角三角形)一对相似,两个等腰。例AE:BD=3:5则AB:BC=4:8=1:2这是因为相似比为3:5,所以EF:FB=3:5,因此ED=4(勾股)而AD=DF+FA=5+3=8!!特别提升线段倍分30度角→直角边斜中=斜的一半三角形中位线梯形中位线证明RT△两边垂直两角互余勾逆证之斜中之逆特别提升重要模型——蝴蝶全等三角形。ABCDEFG模型识记正方形ABCD中,若AE=BF,则AE⊥BF;正方形ABCD中,若AE⊥BF,则AE=BF若将上面的AE、BF换成EF、GH会怎样?ABCDEFEFGH模型拓展正方形ABCD中,E为BC上任一点,F为BC延长线上一点,AE⊥EG交∠DCF的平分线于点G,①求证:AE=EG②若BH⊥AE,求证:BE=HG注:①搞清此模型与上一模型的关系。②在AB上截取BK=BE,证明△ECG≌△AKE是突破点。ABCDFEGHK中点四边形通关口诀任平皆平;矩菱互变;正方自变。对等变菱;对垂变矩;等垂变正。矩形边上一点到对角线距离之和ABCDPEF第于斜高还等于两边之积除以斜边!答案:包头中考13年20题答案:包头中考15年20题答案:包头中考14年20题如图,在正方形ABCD中,对角线AC与BD相交于O点,折叠正方形ABCD,使AB,使AB落在AC上,点B落在点H处,折痕AE交BO于F点,交BC于点E,连接FH,则下列结论正确的是()ABCDOEFH①AD=DF②四边形BEHF为菱形③④①②③④一个概念;三个系数;五种解法。一个判别;两个关系;综合应用。拓展:整体思想+换元;与二次函数联袂。换元法图象法一元二次方程中考选择填空压轴题a≠0△≥0+题目对根的要求根的定义(代入——代数之精华)韦达定理关于两根的对称式:直接变为和与差式。关于根的非对称式:遇高次(一代二违)遇绝对(两边平方)牢记模型本章重点内容三角形判定(普三;直三;等腰)性质(长度;面积)多边形推广相似的模型A字型:(正、歪);8字型(正、歪)K字型:(正;歪)直角;钝角;锐角;反射型射影型(母子型):(正;歪)直射;斜射相似的应用证明;计算。证明:等积;等比;等线。技巧—积变比;横竖找;找不到;让出去;换线段;换比例;相信你;一定行。先画图;找感觉!计算:方程的思想(设表找列)互表:变量互相表示。动点问题文字相似与符号相似的区别思路:找等角→定四边→掉包计!方法:设→表→找→列!成比例的两种理解:自比不变;互比相等。旋转型:旋转→缩放(大A型);平移型;位似型两比五性两技一分割+平行线截线段成比例定理及其逆特别记忆ABCD如图:△ABC为顶角为36°的等腰三角形,BD为其底角的平分线,则:D为线段AC的黄金分割点,且△CBA∽△CDB显然——三角形中的平行与面积ABCDE图中只要知道AD:DB的比值,就可以求出各图形面积的比。进一步知道一个面积,求其它面积。回味无穷三视图主视图——从正面看到的图左视图——从左面看到的图俯视图——从上面看到的图画物体的三视图时,要符合如下原则:位置:主视图

左视图

俯视图大小:长对正,高平齐,宽相等.挑战“自我”,提高画三视图的能力.小结拓展投影与平行投影投影现象;物体在阳光的照射下,会在地面或墙壁上留下它的影子,这就是投影现象。平行投影:太阳光线可以看成是平行光线,象这样的平行光线形成的投影称平行投影。投影的分类平行投影(如太阳光照射物体留下的影子)中心投影(如灯光照射物体留下的影子)平行投影的性质阳光下,物体的影子随时间的变化而变化。影子指向变化:从早到晚物体园子指向变化:西→西北→北→东北→东。物体影子长度变化:从早到晚物体影子长度的变化:长→短→最短→短→长。(想象力)物体上的点和其叶子上的对应点的连线平行。在同一时刻,不同物体的影展与它们的高度成正比。可以理解为:同一时刻,物高:影长=定值(时间不变值不变)。物体的三视图实际上就是某一时刻垂直于投影面的平行投影。中心投影定义:若一束光线是从一个点出发的,象这样的光线形成的投影叫做中心投影。中心投影的光线相交于同一点(物影对应点的连线)。中心投影下:物体不动:物体的影子随点光源位置和方向的变化而变化。光源不动:物体的影子随物体位置和方向的变化而变化。光源固定:物体水平移动,物体离光源越远,其影子越长,反之越短(远长近短)。灯光下的影子与太阳光下影子的区别太阳光线是平行的,因此同一时刻下的影子都与物体高度成正比例。物1:影1=物2:影2灯光的影子是发散的,灯光下的影子与物体高度不一定成比例。同一时刻,阳光的影子总是在同一方向。而灯光的影子的方向则不确定。视点和盲区人的眼睛的位置称视点。由视点发出的线称为视线。人眼看不到的地方称为盲区。点拨:视线不可能穿越障碍物,视线如果遇到障碍物,则有观察不到的地方(盲区)。从视点(眼睛)与障碍物的边缘作直线,该直线通常就是盲区与可视区的分界线。如图所示:一只猫蹲在墙前,老鼠躲在墙后.请你画出老鼠活命的活动区域【例5】猫墙墙盲区盲区盲区特别提升——思维训练如图,把一个长方形纸片OABC放入平面直角坐标系中,使OA、OC分别落在两坐标轴上,连接OB、将纸片沿OB折叠,使点A落在点E的位置,若OA=10,AB=5,求E点的坐标。OABOCEMNxyF1.证明OCF与BFE全等。2.利用方程求△BFE各边长.3.求直角三角形BEF的斜高4.求ON=OC+CM=OC+ME5.利用勾股定理求EN.确定函数自变量取值范围口诀一看分母不为零;二次根下为非负。零指负指底非雷;大括号下成一家。一定范围二定值。把边去等号;在内且相连;在外不去管。函数基本问题定式方程法待定系数法定性定两域(范围)定图象与关系式定增减;看快慢定匀速还是变速定最值(局;全)综合:解方程(组);比大小(解不等式)取特值;设横表纵。(补充)函数的图象定义:把一个函数的自变量的每一个值与对应的函数值分别做为点的横坐标与纵坐标,在平面直角坐标系中描出所有对应的点,所有这些点组成的图形叫做该函数的图象。作法:列表(选值计算画表);描点(对应值为点的坐标);连线(平滑的直线或曲线)。画出的是近似图象。作用(学会看图象):一看对应:(变量互求:有关系式用关系式。)二看趋势:(如何变化)三看范围:(最大最小局部整体区别看)四看增减;(上坡下坡)五看快慢:(陡快缓慢平不变)六解方程:(组)不等式(交点-扫描-投影法)七比大小:(两函数,比大小,找交点,横分段,看变化,求得解)八出方案:(寻求生活中最优选择最佳方案)九取特值:(结合字母常量的几何意义确定常量之间的关系)。十设坐标:(设横表纵——永远不变的真理)。意义:图象上的点一定满足关系式,满足关系式的对应值所对应的点,一定在图象上。(表式图合一)六(补充)函数分类确定关系式是核心。表式图三合一!知类形,设关系,用待定。不知类形,设变量,建模思想,立方程。初中三大函数整式函数分式函数:反比例函数(双曲线)一一次函数(含正比例函数):直线二次函数:抛物线确定函数关系生活模型几何模型一次函数中K的特殊求法找坡度—定坡角—求正切—K即定。两点纵坐标之差÷横坐标之差(注意顺序)理解:速度;速率:变化率。知K反过来亦可求直线与X轴之夹角!加深对“斜率”的理解与记忆。一次函数的图象与性质K管方向(增减);K>0增函数;k<0减函数。K相等,两直线平行。K的乘积为-1,两直线垂直。b管位置:y=kx+b是将直线y=kx平移|b|个单位得到的。

b>0向上平移;b<0向下平移。所以直线Y=kx+b与直线y=kx平行且与y轴的交点为(0,b)一次函数(不含正比例函数)图象的四种情况——K>0K<0

b>0b<0

b>0b<0

图象过一二三象限,不过第四象限。增函数,

图象过一三四象限,不过第二象限。增函数,

图象过一二四象限,不过第三象限。减函数,

图象过二三四象限,不过第一象限。减函数,两个一次函数图象的特殊关系:k同b不同则平行;k反b等关于y轴对称;k反b反关于x轴对称。常函数:指类似y=b或x=a的函数。它们不是一次函数,但它们的图象也是一条直线,且与x轴或y轴平行。一次函数图象与两坐标轴围成的三角形的面积=

——K=±1时,正比例函数的图象就是两坐标轴所成直角的平分线。b22|k|两个一次函数,若K1·K2=-1则这两条直线垂直。拓展提升代数式、方程、不等式与函数的关系——Y=kx+bkx+bkx+b>0kx+b=0kx+b<0

y=kx+bkx+b>0kx+b<0kx+b=0★★★其它函数(如二次函数)以此类推!一次函数的应用解题思路一分为二:分清横、纵坐标表示的实际意义。数形结合:数字—坐标图—直线图(示意图)之间做好“翻译”,做到“三合一”。特别是坐标系中每条线段所代表的“情景”。三法求解:算术法(小学方法);代数法(待定系数法等)确定关系式;几何法(做好坐标与线段的转换,然后根据全等、相似等几何特征列方程求解,最后将线段转化成坐标)。三型结合:指函数,方程,不等式的结合。式判;图判;参数判。无零函数;与正比例比较和联动。确定K:一点定K,横纵相乘;面积定K,几何意义逆推;实际问题,寻找方程;几何问题,有相似用相似。常用xy=k来判断---注意每个象限顶点坐标;与过圆点的直线的关系;与Y=±X的关系。双对称(轴心)初中唯一的“分式”函数。相等;一半;二倍函数正比例函数反比例函数表达式图象形状K>0K<0位置增减性位置增减性y=kx(k≠0)

(k是常数,k≠0)y=xk

直线

双曲线一三象限

y随x的增大而增大一三象限每个象限内,

y随x的增大而减小二四象限二四象限

y随x的增大而减小每个象限内,

y随x的增大而增大填表分析正比例函数和反比例函数的区别比一比反比例函数表达式中k的几何意义反比例长方形:在反比例函数图象上任取一点,过该点分别作坐标轴的垂线,两条垂线与两坐标轴围成的长方形称为反比例长方形。反比例三角形:过反比例函数图象上任一点作一条坐标轴的垂线,这点和垂足、原点构成的三角形叫做反比例三角形。S反比例长方形=|xy|=|k|

S反比例三角形ADO=—|k|S反比例直角三角形AEC=2|k|S反比例平行四边形ABCD=2|k|12ABCDE特别提升一两正一反面积公式:如图——S△OAB=S梯形ABCD反比例函数分矩形对边成比例定理——

如图:AD:DB=CE:EB重要的解题思想:基本图形

——经验积累

——模式识别——ABCD0OABCED熟记基本图形——累积解题经验——识别模式灵活应用——(从简单出发)面积:大三=大梯;小三=小梯正切坡度与一次函数斜率K的关系牢记—角优先掌握三类模型解任意三角形增减性:比大小及化简“绝对式”等代替相似简化运算思路清晰与相似结合威力大全章通关口诀一个坡度三个比;见到直角是前提。三个特角九个值;三边之比要牢记。测距触礁躲台风;设法构造三角形。辅助理当造直角;不破已知边与角。做题要快记模板;比较大小记增减。三角函数的应用解三角形:依据;角的关系;三边关系;边角关系;369三角形;45-9三角形;斜高的求法;斜中定理等。问题:两角三边五要素,知二(至少一边)求三。实际应用:思路:实际问题抽象为三角形问题→有直角、用直角,无直角、造直角。→注意其中的全等,相似关系的利用。应用方程的思想,通过方程求解。分类:边界问题;三垂直问题;测量问题;光线问题;定向问题;其它问题。三角形面积=—ab·sinC;正三角形面积=—a2124√3直角三角形快速切换求边法(强化训练——熟练掌握)用比值法抓住已知准确判断快速求值两量知比值求谁谁在上1112345121351213√2√3√5√10用两边的长度或比值确定属于那种类型,用比值知一求二(其它边)解题“三类”模板304530604560306030454560304530606045xxxxxxxxxx2x3xxxxx1234梯形+双垂直5梯子模型解直角三角形破题秘诀四类模型要牢记少破边角造模型紧扣模型角优先勿忘方程设表列相似不忘随时用能乘不除少麻烦能用三角不勾股能用特值不用普特别延升正弦定理(锐角用其余角代替,前面的任意三角形用正弦求面积的公式中遇到锐角也如此处理应用:选择及填空题中直接用三角形面积的新求法三角形的面积=两边夹角的正弦与两边乘积的一半(需要注意:夹角遇钝变补)。ABCabc函数并网——联想数字母代数式运算符号方程不等式有理式无理式整式分式一次函数二次函数反比例函数函数解函数题两法定式十看定性函数大数据因变量Y(或S)自变量x(或t)关系式图象表格辨函数(式辨+图辨+表辨);定义域+值域;关系式-图象-表格的信息读取一次函数反比例函数二次函数二次函数演义一个定义:整式;二次;a≠0七种形式:一母六子双0式一般式纵0式横0式截0式两根式统一为顶点式理解记忆一个图象抛物线—轴对称常函数—五点法数形定性两法定式三类应用方程法设表列待定系数法几何背景代数背景实际应用三法定一轴一轴定乾坤七式各自表三点法顶点法交点法综合法思想方法:数形结合-方程思想-设横表纵-配方法-取特值法-最值法-韦达法三大关系:与一次函数与方程;与不等式------■三大关系a、b、c的分工与合作------一次函数(正比例函数);反比例函数与二次函数------最高次项从顶点横坐标(对称轴方程)出发):三种求法确定自变量取值范围---------两不靠三角形面积的求法。函数六小灵童六种形式的对称轴+求关系式时的对应方法+八个特殊点的坐标=要牢记八仙过海:顶点(0,C)(±1,a±b+c)(±2,4a±2b+c)(±3,9a±3b+c)确定函数关系式通关补充内容掌握四类特殊二次函数的关系式的确定双零式(b=0、c=0、顶点在原点)。设为对应的关系式,只需图象上的一个点的坐标或一对对应值即可确定其关系式。(画图:略)横零式(b=0,顶点在y轴,对称轴为y轴):设为对应的关系式,只需图象上的两个点的坐标或两对对应值即可确定其关系式。(画图:略)纵零式(顶点在x轴,顶点的纵坐标为零):设为对应的关系式,只需图象上的两个点的坐标或两对对应值即可确定其关系式。(画图:略)截零式:函数图象与y轴的交点为(0,0),此时,c=0,也可以直接设为对应的关系式,只需图象上的两个点的坐标或两对对应值即可确定其关系式。(画图:略掌握一般情况下二次函数关系式的五种求法:一般式;顶点式;交点式;顶横式,顶纵式等。破解动点问题通关口诀—相似搭桥等腰——风水轮流转;中线加高亦等腰。直角——与你同行找相似,勾逆斜中也能行。平行——比翼双飞成比例,相似等角也可以。相似——找等角,掉包计(换座位),顺时针。最短——两村一路牛吃草。面积——定底表高用公式;一拆二放全搞定。长度——设横表纵,标距互变。平四——三平定位要知晓,判定方法灵活用。特四——先平后特。一垂两等变菱形;一垂三等正方形。无关——干掉参数就能成。思路——以静制动,找准临界,分类体验,设表列解。有相似用相似,无相似造相似。三角函数灵活用。同弧所对圆周角与圆心角的关系直径所对的圆周角是直角(原逆)同弧或等弧所对的圆周角相等三类拓展:四点共圆的性质与判定;弦切角性质定理与逆应用;切割及相交弦定理。几个理念:遇弦(有中连中无中作垂);遇切(有点连点无点作垂;找到垂径图,等腰直角射影齐上阵,全等相似三角不能忘三角形四边形正多边形一个模型:垂径图-知二求四几何题:角优先的原则几何计算:先算出角,而后设表列三点确定圆圆的计算与证明常用八种模型射影图斜射影一线三垂直(正K型)一线三等角(歪K型)垂径图共圆图弦切图切割图破解垂径图ABOCD如图所示的模型中:半径(直径);弦(半弦);弦心距;弓高;小弦;和其中的角,知道两个条件(至少一个为长度),即可求出另外所有的长度。弦切角模型PABC原定理:若PA为切线,则∠PAB=∠C逆定理:若∠PAB=∠C,则PA为切线怎么证明(做辅助线)?找切点,过切点的弦和径(直径)做直角三角形即可!切割图+斜射影APBCO如图:PA为⊙O的切线,PBC为割线,则:⑴∠PAB=∠ACB⑵△PAB∽△PCA⑶PA的平方=PB·PC图中无圆,心中有圆,四点共圆┓┓┓┓双直角;对角互补;外角等于内对角;正多边形。利用四点共圆解决角相等,线段成比例,三角形相似等较复杂的几何问题事半功倍,妙不可言!┓┓三类模型:垂径图;弦切图;共圆图;切割图+射影图(斜射影)典型例题ABCD已知:正方形ABCD的边长是6,O是对角线AC与BD的交点,点E在CD上且DE=2CE,连接BE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长是=()EF0提示:根据上述模型,易得:四边形BCFO四点共圆,所以△OGF∽△BGC相似比为OG:OB,自然想到:过E作EM⊥BD,求出EM:EB,易知,BE可求,EM是等腰直角三角形DEM的直角边,DE是知道的,最后,0F:BC(6)=OG:GB=EM:EB(已求出),问题得到解决。MG四点共圆巧解题等腰三角形ABC中,∠ACB=90°,O是斜边AB的中点,D,E分别在直角边AC,BC上,且∠DOE=90°DE交OC于点P,以下结论正确的有()ABCODE①∠DEO=45°②△AOD≌△COE③④┓┗统计与概率(一表两查三数三差三率四图)数据的收集数据的整理数据的分析应用与决策两种调查普查——抽样调查总体个体样本频数频率一表四图统计表——折线统计图条形统计图扇形统计图+频数直方图三数三差中位数平均数众数—极差—方差—标准差三数定集中三差看离散两率测算频率概率简单概率古典概率复杂概率确定事件随机事件试验法—列举法—列表法和树形图法三类概率:一个公式两种方法(列举法;试验法)。三率——频率-概率-百分率统计概率破题口诀总体个体和样本普查抽样容其中四数三差和两率(中位数众数平均数频数)算术加权平均数确定概率两法通放回不放要分清一表四图捕信息有总有分关系明初中数学立体通关教学法培训李树茂发现、建模、分享、并网—四步教学“说、举、做、反”——四步通关“改、变、找、写”——四步破题“懂、会、对、好”——四种境界李氏数学立体通关教学法四步互动——发现、建模、分享、并网。解决怎么自学的问题。四步通关——说、分、举、做。解决怎么听课的问题。四步破题——改、变、找、写、反。解决怎么做题的问题。两个精华——几何精华;代数精华(特殊个体+特殊关系)解决学什么的问题。四种境界——懂、会、对、好。解决怎么评估的问题。立体教学无死角反馈互动同理心目标分四层做题分四步回应要四快接纳要四会懂会对好改变找写读写记算说举做反定—义是什么判—定为什么性—质怎么样定—律是什做发现探索建模分享并网通关一个知识点就是一个游戏关口好会懂对说举做反立体通关全面达标发现建模分享并网立体互动教学章模块关一个数学题就是一个网络游戏条件结论改条件挖隐含做辅线充足的武器弹药和装备变结论简单明了的目标和任务运筹指挥中心帷幄充分灵活利用资源组织有效进攻数与代数实践与运用空间与图形统计与概率初中数学知识树实数方程概率统计函数代数式图形与坐标图形与证明图形与变换图形的认识课题学习综合应用实践活动运算分类相关概念整式分式二次根式分类解法应用常量变量概念表示分类二次函数反比例函数一次函数平面直角坐标系证明的方法证明的依据证明的含义图形的平移图形的轴对称图形的旋转图形的相似三角形四边形圆形点、线、面、体相交线平行线数据的收集与整理数据的描述数据的分析计算与估算列表、树状图意义、事件独立思考合作交流获得体验提炼策略体会知识形成过程培养应用意识发展思维能力教材内容数与代数代数式整式分式二次根式单项式运算多项式系数次数数字因数字母指数和因式分解次数项最高项的次数每个单项式同类项合并同类项幂的乘法单项式与多项式乘法公式平方差、完全平方同底数幂相除单项式除以单项式多项式除以单项式提公因式法公式法十字相乘法分组分解法逆用公式互逆运算基本性质运算分式方程分母中含字母、分母不为零通分约分乘除加减乘方最简公分母公因式子积为子母积为母化除法为乘法同分母异分母分母不变分子相加减通分化成同分母注:分子、分母为多项式时先分解因式整式方程去分母解方程检验最简公分母=00≠增根是解升降幂排列系数相加字母不变不改变分式的值解法应用除法乘法加减定义性质运算加减乘除意义教材内容一次函数与反比例函数反比例函数一次函数解析式性质图象性质k>0k<0b<0,图象在一三四象限b=0,图象在一三象限b>0,图象在一二三象限b<0,图象在二三四象限b=0,图象在二四象限b>0,图象在一二四象限k>0k<0Y随x的增大而增大Y随x的增大而减小形如y=kx+b(k.b为常数,k≠0)注意:过原点当b=0时,是正比例函数一条直线图象解析式应用应用k>0k<0图象在二四象限图象在一三象限双曲线Y随x的增大而减小每一象限内Y随x的增大而增大每一象限内k>0k<0柱形储藏室轮船卸货力学问题电学问题关系K同号时,有两交点。K异号时,有两个、一个或无交点实际问题,图象在第一象限最优方案数与代数教材内容1.开口方向2.顶点坐标3.对称轴4.增减性5.极值一元二次方程二次函数解析式性质图象解法y=ax2+bx+c(a.b.c为常数a≠0)定义应用应用关系二次函数与一元二次方程

一般式顶点式交点式开口方向.a>0.向上a<0.向下对称轴在y轴的位置左同右异

与y轴交点位置c>0.在正半轴c=0.在原点c<0.在负半轴类型①②③④⑤看式子类型能口述性质看图象能口述性质提公因式法公式法配方法直接开平方法降次十字相乘法化为直接开方万能公式应用平方根ax2+bx+c=0(a≠0)传播问题行程问题效率问题面积问题抛物线与x轴的交点一元二次方程的根Δ>0Δ=0Δ<0有两交点(x1,0)(x2,0

)有一交点(,0)无交点有两个不等根X1,

x2有两个等根x1=x2

=无实根磁道问题利润问题拱桥问题数与代数教材内容相交线.平行线图形认识初步关系图形认识初步

相交线平行线

多姿多彩的图形直线.射线.线段角的度量角的比较与运算平面图形点与直线位置关系知名称三视图展开与折叠辨认展开图确定有标记的相对图直线射线线段叠合法直线公理表示与画法寻找射线方法表示与画法计算与比较性质立体图形角的计算定义.表示进位.计算尺规作角度.分.秒互化角的比较度量法余角.补角角平分线等角的余角相等等角的补角相等性质平行线相交线对邻顶补角角垂直性质判定相等和为1800点到直线的距离性质定义画法条件平行公理.推论一“放”二“靠”三“推”四“画”同位角相等内错角相等同旁内角互补同位角相等同旁内角互补内错角相等分类结构命题空间与图形借助角研究平面内两条直线的位置关系教材内容三角形三角形等腰三角形直角三角形有关线段多边形及其内角和有关的角概念勾股定理定义三边关系高.中线.角平分线内角和外角的性质定义外角和内角和镶嵌定义条件性质判定特例定义表示方法要素等边对等角三线合一等角对等边等边三角形锐角三角函数定理逆定理应用证明内容文字.符号图形已知两边求第三边弦图毕达哥拉斯苏菲尔德应用证明内容文字.符号图形全等知三边定形状互逆命题锐角三角函数解直角三角形应用计算定义正弦余弦正切特殊值的运算符号.几何意义.特殊角的值坡度仰.俯角方位角三边关系锐角关系边角关系空间与图形教材内

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论