版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.采用系统抽样方法从人中抽取人做问卷调查,为此将他们随机编号为,,,,分组后某组抽到的号码为1.抽到的人中,编号落入区间的人数为()A.10 B. C.12 D.132.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是()A. B. C. D.3.在三棱锥中,,二面角的大小为,则三棱锥的外接球的表面积为()A. B. C. D.4.在正方体中,、分别是棱和的中点,为上底面的中心,则直线与所成的角为()A.30° B.45° C.60° D.90°5.的值为()A. B. C. D.6.下列不等式正确的是()A.若,则 B.若,则C.若,则 D.若,则7.已知,函数的最小值是()A.5 B.4 C.8 D.68.在中,,,则()A.或 B. C. D.9.下列说法中,正确的是()A.若,则B.若,则C.若,则D.若,则10.某公司在甲、乙、丙、丁四个地区分别有150,120,180,150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本.记这项调查为①;在丙地区有20个大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法 B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法 D.简单随机抽样法,分层抽样法二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边经过点,则的值为____________.12.在中,若,则等于__________.13.函数f(x)=sin22x的最小正周期是__________.14.已知,是第三象限角,则.15.若数列满足,且,则___________.16.已知函数,,则的最大值是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设的内角所对的边分别为,且,.(Ⅰ)求的值;(Ⅱ)求的值.18.已知向量,,其中为坐标原点.(1)若,求向量与的夹角;(2)若对任意实数都成立,求实数的取值范围.19.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD="40"m,则电视塔的高度为多少?20.如图,在斜三棱柱中,侧面是边长为的菱形,平面,,点在底面上的射影为棱的中点,点在平面内的射影为证明:为的中点:求三棱锥的体积21.如图,在直三棱柱中,,,是棱的中点.(1)求证:;(2)求证:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为an=30n﹣19,由401≤30n﹣21≤755,求得正整数n的个数,即可得出结论.【详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列,又某组抽到的号码为1,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,∴等差数列的通项公式为an=11+(n﹣1)30=30n﹣19,由401≤30n﹣19≤755,n为正整数可得14≤n≤25,∴做问卷C的人数为25﹣14+1=12,故选C.【点睛】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.2、C【解析】
本题首先可以根据直角三角形的三边长求出三角形的内切圆半径,然后分别计算出内切圆和三角形的面积,最后通过几何概型的概率计算公式即可得出答案.【详解】如图所示,直角三角形的斜边长为,设内切圆的半径为,则,解得.所以内切圆的面积为,所以豆子落在内切圆外部的概率,故选C.【点睛】本题主要考查“面积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.3、D【解析】
取AB中点F,SC中点E,设的外心为,外接圆半径为三棱锥的外接球球心为,由,在四边形中,设,外接球半径为,则则可求,表面积可求【详解】取AB中点F,SC中点E,连接SF,CF,因为则为二面角的平面角,即又设的外心为,外接圆半径为三棱锥的外接球球心为则面,由在四边形中,设,外接球半径为,则则三棱锥的外接球的表面积为故选D【点睛】本题考查二面角,三棱锥的外接球,考查空间想象能力,考查正弦定理及运算求解能力,是中档题4、A【解析】
先通过平移将两条异面直线平移到同一个起点,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可.【详解】解:先画出图形,将平移到,为直线与所成的角,设正方体的边长为,,,,,,故选:.【点睛】本题主要考查了异面直线及其所成的角,以及余弦定理的应用,属于基础题.5、C【解析】试题分析:.考点:诱导公式.6、B【解析】试题分析:A.若c<0,则不等号改变,若c=0,两式相等,故A错误;B.若,则,故,故B正确;C.若b=0,则表达是不成立故C错误;D.c=0时错误.考点:不等式的性质.7、D【解析】试题分析:因为该函数的单调性较难求,所以可以考虑用不等式来求最小值,,因为,由重要不等式可知,所以,本题正确选项为D.考点:重要不等式的运用.8、C【解析】
由正弦定理计算即可。【详解】由题根据正弦定理可得即,解得,所以为或,又因为,所以为故选C.【点睛】本题考查正弦定理,属于简单题。9、C【解析】试题分析:选项A中,条件应为;选项B中当时不成立;选项D中,结论应为;C正确.考点:不等式的性质.10、B【解析】
此题为抽样方法的选取问题.当总体中个体较少时宜采用简单随机抽样法;当总体中的个体差异较大时,宜采用分层抽样;当总体中个体较多时,宜采用系统抽样.【详解】依据题意,第①项调查中,总体中的个体差异较大,应采用分层抽样法;第②项调查总体中个体较少,应采用简单随机抽样法.
故选B.【点睛】本题考查随机抽样知识,属基本题型、基本概念的考查.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由题意和任意角的三角函数的定义求出的值即可.【详解】由题意得角的终边经过点,则,所以,故答案为.【点睛】本题考查任意角的三角函数的定义,属于基础题.12、;【解析】
由条件利用三角形内角和公式求得,再利用正弦定理即可求解.【详解】在中,,,,即,,故答案为:【点睛】本题考查了正弦定理解三角形,需熟记定理的内容,属于基础题.13、.【解析】
将所给的函数利用降幂公式进行恒等变形,然后求解其最小正周期即可.【详解】函数,周期为【点睛】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,属于基础题.14、.【解析】试题分析:根据同角三角函数的基本关系知,,化简整理得①,又因为②,联立方程①②即可解得:,,又因为是第三象限角,所以,故.考点:同角三角函数的基本关系.15、【解析】
对已知等式左右取倒数可整理得到,进而得到为等差数列;利用等差数列通项公式可求得,进而得到的通项公式,从而求得结果.【详解】,即数列是以为首项,为公差的等差数列故答案为:【点睛】本题考查利用递推公式求解数列通项公式的问题,关键是明确对于形式的递推关系式,采用倒数法来进行推导.16、3【解析】函数在上为减函数,故最大值为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】(Ⅰ)因为,所以分别代入得解得(Ⅱ)由得,因为所以所以【考点定位】本题考查了正弦定理和余弦定理的应用,考查了方程思想和运算能力.由求的过程中体现了整体代换的运算技巧,而求的过程则体现了“通性通法”的常规考查.18、(1)或;(2)或.【解析】
(1)按向量数量积的定义先求夹角余弦,再求得夹角;(2)不等式化为恒成立,令取1和-1代入解不等式组即可得.【详解】(1)由题意,,记向量与的夹角为,又,则,当时,,,当时,,.(2),由得,∵,∴,∴,解得或.【点睛】本题考查向量模与夹角,考查不等式恒成立问题,不等式中把作为一个整体,它是关于的一次不等式,因此要使它恒成立,只要取1和-1时均成立即可.19、40m.【解析】试题分析:本题是解三角形的实际应用题,根据题意分析出图中的数据,即∠ADB=30°,∠ACB=45°,所以,可以得出在Rt△ABD中,BD=AB,在Rt△ABC中,∴BC=AB.在△BCD中,由余弦定理,得BD2=BC2+CD2-2BC·CDcos∠BCD,代入数据,运算即可得出结果.试题解析:根据题意得,在Rt△ABD中,∠ADB=30°,∴BD=AB,在Rt△ABC中,∠ACB=45°,∴BC=AB.在△BCD中,由余弦定理,得BD2=BC2+CD2-2BC·CDcos∠BCD,∴3AB2=AB2+CD2-2AB·CDcos120°整理得AB2-20AB-800=0,解得,AB=40或AB=-20(舍).即电视塔的高度为40m考点:解三角形.20、(1)详见解析(2)【解析】
(1)先证平面平面,说明平面且,根据菱形的性质即可说明为的中点.(2)根据,即求出即可.【详解】(1)证明:因为面,平面,所以平面平面;交线为过作,则平面,又是菱形,,所以为的中点(2)由题意平面【点睛】本题考查面面垂直的性质定理,利用等体积转换法求三棱锥的体积,属于基础题.21、(1)见详解;(2)见详解.【解析】
(1)连接AC1,设AC1∩A1C=O,连接OD,可求O为AC1的中点,D是棱AB的中点,利用中位线的性质可证OD∥BC1,根据线面平行的判断定理即可证明BC1∥平面A1CD.(2)由(1)可证平行四边形ACC1A1是菱形,由其性质可得AC1⊥A1C,利用线面垂直的性质可证AB⊥AA1,根据AB⊥AC,利用线面垂直的判定定理可证AB⊥平面ACC1A1,利用线面垂直的性质可证AB⊥A1C,又AC1⊥A1C,根据线面垂直的判定定理可证A1C⊥平面ABC1,利用线面垂直的性质即可证明BC1⊥A1C.【详解】(1)连接AC1,设AC1∩A1C=O,连接OD,在直三棱柱ABC﹣A1B1C1中,侧面ACC1A1是平行四边形,所以:O为AC1的中点,又因为:D是棱AB的中点,所以:OD∥BC1,又因为:BC1⊄平面A1CD,OD⊂平面A1CD,所以:BC1∥平面A1CD.(2)由(1)可知:侧面ACC1A1是平行四边形,因为:AC=AA1,所以:平行四边形ACC1A1是菱形,所以:AC1⊥A1C,在直三棱柱ABC﹣A1B1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高科技企业应收账款质押担保合同样本3篇
- 二零二五版高校学术期刊合作承包出版合同3篇
- 2025版卫生院与乡村医生合作协议书3篇
- 二零二五版旅游导购人员派遣合同2篇
- 2025年度跨境电商进口商品质量担保合同4篇
- 二零二五年车抵押贷款提前还款合同模板3篇
- 2025版无人配送机器人运营免责条款合同范本4篇
- 二零二五版企业班车租赁及节能减排服务合同3篇
- 二零二五年度透水混凝土工程市场营销合作协议2篇
- 第一人民医院二零二五年度进修人员医疗质量管理与服务协议3篇
- 第1课 隋朝统一与灭亡 课件(26张)2024-2025学年部编版七年级历史下册
- 2025-2030年中国糖醇市场运行状况及投资前景趋势分析报告
- 冬日暖阳健康守护
- 水处理药剂采购项目技术方案(技术方案)
- 2024级高一上期期中测试数学试题含答案
- 山东省2024-2025学年高三上学期新高考联合质量测评10月联考英语试题
- 不间断电源UPS知识培训
- 三年级除法竖式300道题及答案
- 品学课堂新范式
- GB/T 1196-2023重熔用铝锭
- 幼儿园教师培训:计数(数数)的核心经验
评论
0/150
提交评论